-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_results.R
78 lines (56 loc) · 2.2 KB
/
model_results.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
## PEI ##
m_pe <- tar_read(model_fit_pe)
mc1 <- m_pe[[1]]$mchoice
mc2 <- m_pe[[2]]$mchoice
mc3 <- m_pe[[3]]$mchoice
mc4 <- m_pe[[4]]$mchoice
mv1 <- m_pe[[1]]$stats
mv2 <- m_pe[[2]]$stats
mv3 <- m_pe[[3]]$stats
mv4 <- m_pe[[4]]$stats
#' Model comparison table
a <- rbind(mc1, mc2, mc3, mc4)
a <- a[, -c(2,4,5,6)]
b.rmse <- c(mv1$rmse, mv2$rmse, mv3$rmse, mv4$rmse)
b.mae <- c(mv1$mae, mv2$mae, mv3$mae, mv4$mae)
b.crps <- c(mv1$crps, mv2$crps, mv3$crps, mv4$crps)
b.cvg <- c(mv1$cvg, mv2$cvg, mv3$cvg, mv4$cvg)
a <- cbind(a, b.rmse, b.mae, b.crps, b.cvg)
rownames(a) <- c("Linear", "ANOVA", "AR(1)", "AR(2)")
colnames(a) <- c("DIC", "WAIC", "RMSE", "MAE", "CRPS", "CVG")
table.pei <- a
library(imputeTS)
# NS fitting
# Formula
form <- tot_prod ~ mean_temp_high + mean_pcp_high
ns_ts <- tar_read(ns_ts)
ns_ts[,22:25] <- apply(ns_ts[,22:25], 2, na_interpolation, option = "spline") #Impute missing covariates
train_ns <- ns_ts %>%
filter(Date < "2006-01-01") %>%
dplyr::select(GeoUID, Date, tot_prod, mean_temp_high, mean_temp_low, mean_pcp_high, mean_pcp_low, t, s)
wr_ns <- tar_read(weightmat_ns)
# Validation Rows
vs = sample(nrow(train_ns), 0.1*nrow(train_ns))
Bcartime(formula=form, data=train_ns, scol= "s", tcol= "t",
W=wr_ns, model="linear", family="gaussian", package="CARBayesST",
validrows = vs,
N=5000, burn.in=1000, thin=10)
Bcartime(formula=form, data=train_ns, scol= "s", tcol= "t",
W=wr_ns, model="ar", AR=2, family="gaussian", package="CARBayesST",
validrows = vs,
N=5000, burn.in=1000, thin=10)
#NB fitting
# Formula
form <- tot_prod ~ mean_temp_high + mean_pcp_high
nb_ts <- tar_read(nb_ts)
nb_ts[,22:25] <- apply(nb_ts[,22:25], 2, na_interpolation, option = "spline") #Impute missing covariates
train_nb <- nb_ts %>%
filter(Date < "2006-01-01") %>%
dplyr::select(GeoUID, Date, tot_prod, mean_temp_high, mean_temp_low, mean_pcp_high, mean_pcp_low, t, s)
wr_nb <- tar_read(weightmat_nb)
# Validation Rows
vs = sample(nrow(train_nb), 0.1*nrow(train_nb))
Bcartime(formula=form, data=train_nb, scol= "s", tcol= "t",
W=wr_nb, model="ar", AR=2, family="gaussian", package="CARBayesST",
validrows = vs,
N=5000, burn.in=1000, thin=10)