forked from imran1289-ah/EmotionDetector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset-visualization.py
106 lines (83 loc) · 3.93 KB
/
dataset-visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import numpy as np
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
from tqdm import tqdm
from multiprocessing import Pool
# Define a transform to read the images
transform = transforms.Compose([transforms.Resize((200, 200)), transforms.ToTensor()])
def load_dataset(data_dir):
dataset = datasets.ImageFolder(data_dir, transform=transform)
return dataset
# Select 25 random images from each class
def get_random_images(dataset):
random_images = {}
for class_index, class_name in enumerate(dataset.classes):
indices = np.where(np.array(dataset.targets) == class_index)[0]
np.random.shuffle(indices)
selected_indices = indices[:25] # Select 25 random images
random_images[class_name] = [dataset[idx] for idx in selected_indices]
return random_images
def plot_class_distribution(dataset):
classes = dataset.classes
# Count the occurrence of each class
_, counts = np.unique(dataset.targets, return_counts=True)
plt.figure(figsize=(10, 6))
bars = plt.bar(classes, counts, color='rebeccapurple')
plt.xlabel('Classes')
plt.ylabel('Number of Images')
plt.title('Class Distribution')
for bar, count in zip(bars, counts):
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width() / 2.0, height, f'{count}', ha='center', va='bottom')
plt.show()
def display_sample_images(random_images):
for class_name, images in random_images.items():
fig, axes = plt.subplots(5, 5, figsize=(8, 8))
fig.subplots_adjust(hspace=0.5, wspace=0.1)
fig.suptitle(f'Class: {class_name}', fontsize=16)
for ax, (img, label) in zip(axes.flatten(), images):
ax.axis('off')
ax.imshow(np.transpose(img.numpy(), (1, 2, 0)))
ax.set_title(class_name, fontsize=8)
plt.show()
def process_image_data(args):
img, class_index = args
img = np.transpose(img.numpy(), (1, 2, 0))
histograms = []
for i in range(3): # RGB channels
hist, bin_edges = np.histogram(img[:, :, i].ravel(), bins=256, range=(0, 1))
histograms.append(hist)
return class_index, histograms
def plot_pixel_intensity_distribution_parallel(random_images):
image_data = [(img, class_index) for class_index, (_, images) in enumerate(random_images.items()) for img, _ in images]
# Process images in parallel using a pool of processes
with Pool(processes=os.cpu_count()) as pool:
results = pool.map(process_image_data, tqdm(image_data, desc="Processing Images"))
# Reorganize results by class
class_histograms = {class_name: [[] for _ in range(3)] for class_name in random_images.keys()} # Prepare lists for RGB channels
for class_index, histograms in results:
class_name = list(random_images.keys())[class_index]
for i in range(3): # RGB channels
class_histograms[class_name][i].append(histograms[i])
# Plotting
fig, axes = plt.subplots(1, 4, figsize=(20, 5))
bin_edges = np.linspace(0, 1, 257) # Assuming 256 bins from 0 to 1
bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2
for class_index, (class_name, histograms) in enumerate(class_histograms.items()):
for color_index, color in enumerate(['r', 'g', 'b']):
# Aggregate histograms for the current color channel
agg_hist = np.sum(histograms[color_index], axis=0)
axes[class_index].bar(bin_centers, agg_hist, width=1/256, color=color, alpha=0.5, label=color.upper(), align='center')
axes[class_index].set_title(class_name)
axes[class_index].set_xlim([0, 1])
axes[class_index].legend()
plt.show()
if __name__ == '__main__':
data_dir = './dataset'
dataset = load_dataset(data_dir)
random_images = get_random_images(dataset)
plot_class_distribution(dataset)
display_sample_images(random_images)
plot_pixel_intensity_distribution_parallel(random_images)
print('Done!')