-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathburst-balloons.cc
42 lines (38 loc) · 1.13 KB
/
burst-balloons.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// Burst Balloons
// dynamic programming
// NB. F. Frances Yao's optimization does not apply
#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define REP(i, n) for (int i = 0; i < (n); i++)
#define ROF(i, a, b) for (int i = (b); --i >= (a); )
class Solution {
public:
int maxCoins(vector<int>& nums) {
int n = nums.size();
if (! n)
return 0;
vector<vector<int>> dp(n, vector<int>(n, 0));
ROF(i, 0, n)
FOR(j, i, n) {
FOR(k, i, j+1)
dp[i][j] = max(dp[i][j], (k ? dp[i][k-1] : 0) + (k+1 < n ? dp[k+1][j] : 0) + (i ? nums[i-1] : 1) * nums[k] * (j+1 < n ? nums[j+1] : 1));
}
return dp[0][n-1];
}
};
/// with padding
#define FOR(i, a, b) for (int i = (a); i < (b); i++)
#define ROF(i, a, b) for (int i = (b); --i >= (a); )
class Solution {
public:
int maxCoins(vector<int>& nums) {
int n = nums.size();
nums.insert(nums.begin(), 1);
nums.push_back(1);
vector<vector<int>> dp(n+2, vector<int>(n+2, 0));
ROF(i, 1, n+1)
FOR(j, i, n+1)
FOR(k, i, j+1)
dp[i][j] = max(dp[i][j], dp[i][k-1]+dp[k+1][j]+nums[i-1]*nums[k]*nums[j+1]);
return dp[1][n];
}
};