-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathintegrator.h
208 lines (152 loc) · 5.24 KB
/
integrator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#include "Eigen/Dense"
#include "Eigen/StdVector"
#include "MCT.h"
#include "lyap.h"
#include <cmath>
#include <vector>
class Integrator
{
public:
Eigen::VectorXf diff(Eigen::VectorXf X, Eigen::VectorXf dX, double t)
{
static int i=1;
double q1 = X(0);
double q2 = X(1);
double q1dot = X(2);
double q2dot = X(3);
double delm1 = X(4);
double delm2 = X(5);
double q1ddot = dX(2);
double q2ddot = dX(3);
double m1predict = m1 + delm1;
double m2predict = m2 + delm2;
if(i%1000==0)
cout<<"Mass "<<m1predict<<" "<<m2predict<<endl;\
i++;
MCT *mctp = new MCT(m1predict, m2predict, a1, a2);
Eigen::MatrixXf Mp = mctp->M(q1, q2);
delete mctp;
//desired trajectory
double Dq1 = M_PI+sin(t);
double Dq2 = 2*M_PI-cos(t);
double Dqdot1 = cos(t);
double Dqdot2 = sin(t);
double Dqddot1 = -sin(t);
double Dqddot2 = cos(t);
Eigen::VectorXf DX(6);
DX(0)=Dq1;
DX(1)=Dq2;
DX(2)=Dqdot1;
DX(3)=Dqdot2;
DX(4)=Dqddot1;
DX(5)=Dqddot2;
Eigen::MatrixXf err(4,1);
err(0,0)=X(0)-DX(0);
err(1,0)=X(1)-DX(1);
err(2,0)=X(2)-DX(2);
err(3,0)=X(3)-DX(3);
Eigen::MatrixXf W(2, 2);
W(0, 0) = q1ddot * a1 * a1 + g * cos(q1) * a1;
W(0, 1) = q1ddot * (a1 * a1 + 2 * cos(q2) * a1 * a2 + a2 * a2) - q2dot * (2 * a1 * a2 * q1dot * sin(q2) + a1 * a2 * q2dot * sin(q2)) + q2ddot * (a2 * a2 + a1 * cos(q2) * a2) + a2 * g * cos(q1 + q2) + a1 * g * cos(q1);
W(1, 0) = 0;
W(1, 1) = a2 * (a1 * sin(q2) * q1dot * q1dot + a2 * q1ddot + a2 * q2ddot + g * cos(q1 + q2) + a1 * q1ddot * cos(q2));
//Setting A and Q matrix and lyapunov function
Eigen::MatrixXf A = Eigen::MatrixXf::Zero(4, 4);
Eigen::MatrixXf B = Eigen::MatrixXf::Zero(4, 2);
Eigen::MatrixXf Q = Eigen::MatrixXf::Identity(4, 4);
Eigen::MatrixXf d_errX(4,1);
Eigen::MatrixXf del_theta(2,1);
B(2,0)=1;
B(3,1)=1;
del_theta(0,0)=delm1;
del_theta(1,0)=delm2;
// cout<<"\n\nA "<<A<<endl;
A(0, 2) = 1;
A(1, 3) = 1;
A(2, 0) = -kp1;
A(2, 2) = -kd1;
A(3, 1) = -kp2;
A(3, 3) = -kd2;
B(2,0)=1;
B(3,1)=1;
del_theta(0,0)=delm1;
del_theta(1,0)=delm2;
Eigen::MatrixXf Mp_inv=Mp.inverse();
d_errX=A*err + B*Mp_inv*W*del_theta;
lyap *test = new lyap();
Eigen::MatrixXf P = test->lyapunov(A.transpose(), Q);
Eigen::MatrixXf mass_ddot=-2*W.transpose()*Mp_inv*B.transpose()*P*err;
Eigen::VectorXf new_dX(6);
new_dX(0)=DX(2)+d_errX(0);
new_dX(1)=DX(3)+d_errX(1);
new_dX(2)=DX(4)+d_errX(2);
new_dX(3)=DX(5)+d_errX(3);
new_dX(4)=mass_ddot(0);
new_dX(5)=mass_ddot(1);
q1_plt.push_back(std::pair<double,double>(X(0),t));
q2_plt.push_back(std::pair<double,double>(X(1),t));
q1dot_plt.push_back(std::pair<double,double>(X(2),t));
q2dot_plt.push_back(std::pair<double,double>(X(3),t));
desired_q1_plt.push_back(std::pair<double,double>(sin(t),t));
desired_q2_plt.push_back(std::pair<double,double>(-cos(t),t));
desired_q1dot_plt.push_back(std::pair<double,double>(cos(t),t));
desired_q2dot_plt.push_back(std::pair<double,double>(sin(t),t));
m1_plt.push_back(std::pair<double,double>(m1predict,t));
m2_plt.push_back(std::pair<double,double>(m2predict,t));
return new_dX;
}
vector<std::pair<double,double>> access_q1()
{
return q1_plt;
}
vector<std::pair<double,double>> access_q2()
{
return q2_plt;
}
vector<std::pair<double,double>> access_q1dot()
{
return q1dot_plt;
}
vector<std::pair<double,double>> access_q2dot()
{
return q2dot_plt;
}
vector<std::pair<double,double>> access_desired_q1()
{
return desired_q1_plt;
}
vector<std::pair<double,double>> access_desired_q2()
{
return desired_q2_plt;
}
vector<std::pair<double,double>> access_desired_q1dot()
{
return desired_q1dot_plt;
}
vector<std::pair<double,double>> access_desired_q2dot()
{
return desired_q2dot_plt;
}
vector<std::pair<double,double>> access_m1()
{
return m1_plt;
}
vector<std::pair<double,double>> access_m2()
{
return m2_plt;
}
private:
double m1 = 3, m2 = 2, a1 = 2, a2 = 3;
double g = 9.8;
double kp1=2,kp2=2, kd1=10,kd2=10;
vector <std::pair<double,double>> q1_plt;
vector <std::pair<double,double>> q2_plt;
vector <std::pair<double,double>> q1dot_plt;
vector <std::pair<double,double>> q2dot_plt;
vector <std::pair<double,double>> m1_plt;
vector <std::pair<double,double>> m2_plt;
vector <std::pair<double,double>> desired_q1_plt;
vector <std::pair<double,double>> desired_q2_plt;
vector <std::pair<double,double>> desired_q1dot_plt;
vector <std::pair<double,double>> desired_q2dot_plt;
};