-
-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathunionfind.go
62 lines (55 loc) · 1.98 KB
/
unionfind.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
// Union Find Algorithm or Dynamic Connectivity algorithm, often implemented with the help
//of the union find data structure,
// is used to efficiently maintain connected components in a graph that undergoes dynamic changes,
// such as edges being added or removed over time
// Worst Case Time Complexity: The time complexity of find operation is nearly constant or
//O(α(n)), where α(n) is the inverse Ackermann function
// practically, this is a very slowly growing function making the time complexity for find
//operation nearly constant.
// The time complexity of the union operation is also nearly constant or O(α(n))
// Worst Case Space Complexity: O(n), where n is the number of nodes or element in the structure
// Reference: https://www.scaler.com/topics/data-structures/disjoint-set/
// https://en.wikipedia.org/wiki/Disjoint-set_data_structure
// Author: Mugdha Behere[https://github.com/MugdhaBehere]
// see: unionfind.go, unionfind_test.go
package graph
// Defining the union-find data structure
type UnionFind struct {
parent []int
rank []int
}
// Initialise a new union find data structure with s nodes
func NewUnionFind(s int) UnionFind {
parent := make([]int, s)
rank := make([]int, s)
for i := 0; i < s; i++ {
parent[i] = i
rank[i] = 1
}
return UnionFind{parent, rank}
}
// Find finds the root of the set to which the given element belongs.
// It performs path compression to make future Find operations faster.
func (u *UnionFind) Find(q int) int {
if q != u.parent[q] {
u.parent[q] = u.Find(u.parent[q])
}
return u.parent[q]
}
// Union merges the sets, if not already merged, to which the given elements belong.
// It performs union by rank to keep the tree as flat as possible.
func (u *UnionFind) Union(p, q int) {
rootP := u.Find(p)
rootQ := u.Find(q)
if rootP == rootQ {
return
}
if u.rank[rootP] < u.rank[rootQ] {
u.parent[rootP] = rootQ
} else if u.rank[rootP] > u.rank[rootQ] {
u.parent[rootQ] = rootP
} else {
u.parent[rootQ] = rootP
u.rank[rootP]++
}
}