-
-
Notifications
You must be signed in to change notification settings - Fork 673
/
Copy pathLogistic_Regression.py
60 lines (50 loc) · 1.8 KB
/
Logistic_Regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : Logistic_Regression.py
# Author : YunYang1994
# Created date: 2019-03-08 22:28:21
# Description :
#
#================================================================
import numpy as np
import tensorflow as tf
# Parameters
learning_rate = 0.001
training_epochs = 6
batch_size = 600
# Import MNIST data
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
train_dataset = (
tf.data.Dataset.from_tensor_slices((tf.reshape(x_train, [-1, 784]), y_train))
.batch(batch_size)
.shuffle(1000)
)
train_dataset = (
train_dataset.map(lambda x, y:
(tf.divide(tf.cast(x, tf.float32), 255.0),
tf.reshape(tf.one_hot(y, 10), (-1, 10))))
)
# Set model weights
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# Construct model
model = lambda x: tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
# Minimize error using cross entropy
compute_loss = lambda true, pred: tf.reduce_mean(tf.reduce_sum(tf.losses.binary_crossentropy(true, pred), axis=-1))
# caculate accuracy
compute_accuracy = lambda true, pred: tf.reduce_mean(tf.keras.metrics.categorical_accuracy(true, pred))
# Gradient Descent
optimizer = tf.optimizers.Adam(learning_rate)
for epoch in range(training_epochs):
for i, (x_, y_) in enumerate(train_dataset):
with tf.GradientTape() as tape:
pred = model(x_)
loss = compute_loss(y_, pred)
acc = compute_accuracy(y_, pred)
grads = tape.gradient(loss, [W, b])
optimizer.apply_gradients(zip(grads, [W, b]))
print("=> loss %.2f acc %.2f" %(loss.numpy(), acc.numpy()))