-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcamera.py
176 lines (127 loc) · 6.53 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from concurrent.futures import process
import os
import numpy as np
import time
import cv2
class CameraProcessor(object):
font = cv2.FONT_HERSHEY_SIMPLEX
_marker = [0,0,0,0]
_tract = [0,0,0,0]
@property
def marker(self):
return self._marker
@property
def tract(self):
return self._tract
@marker.setter
def marker(self, value):
self._marker = value
self.brain.set_marker(value)
@tract.setter
def tract(self, value):
self._tract = value
self.brain.set_tract(value)
def __init__(self, brain):
self.brain = brain
print("Preparing camera")
# Last please!
print("Sleeping for 3 seconds")
time.sleep(3)
def crop_image(self, image):
return image[400:1400, 100:900]
def get_average_color(self, image):
return np.array(cv2.mean(image)).astype(np.uint8)
def get_average_color_of_contour(self, image, contour):
return np.array(cv2.mean(image[contour])).astype(np.uint8)
def get_gray_image(self, image):
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
def process_image(self, frame):
self.brain.process()
cropped_color = self.crop_image(frame)
cropped_grey = self.get_gray_image(cropped_color)
info_height = int(1920 - (cropped_color.shape[0] * 3))
info_width = cropped_color.shape[1]
info_image = np.zeros((info_height, info_width,3), np.uint8)
ret,thresh = cv2.threshold(cropped_grey, 10, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
contours = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
output = self.process_contours(contours, cropped_color)
cropped = cv2.resize(cropped_grey, (1080, int(1080 * cropped_grey.shape[0] / cropped_grey.shape[1])), interpolation = cv2.INTER_AREA)
thresh = cv2.resize(thresh, (1080, int(1080 * thresh.shape[0] / thresh.shape[1])), interpolation = cv2.INTER_AREA)
output = cv2.resize(output, (1080, int(1080 * output.shape[0] / output.shape[1])), interpolation = cv2.INTER_AREA)
frame = cv2.resize(frame, (1080, int(1080 * frame.shape[0] / frame.shape[1])), interpolation = cv2.INTER_AREA)
info = cv2.resize(info_image, (1080, int(1920 - (cropped.shape[0] * 3))), interpolation = cv2.INTER_AREA)
self.put_info_on_info_image(info)
self.display_window(cropped, thresh, output, frame, info=info)
def put_info_on_info_image(self, info):
ts = 0.75
cv2.putText(info, f"Marker: {self.marker}", (5,25), self.font, ts, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(info, f"Tract: {self.tract}", (5,50), self.font, ts, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(info, f"Position {self.brain.position}", (5,75), self.font, ts, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(info, f"Action {self.brain.action}", (5,100), self.font, ts, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(info, f"Has new tract {self.brain.is_new_tract}", (5,125), self.font, ts, (255, 255, 255), 1, cv2.LINE_AA)
time_remaining = int(self.brain.last_valid_tract + 10 - time.time())
cv2.putText(info, f"Time remaining: {time_remaining}", (5,150), self.font, ts, (255, 255, 255), 1, cv2.LINE_AA)
def find_marker(self, contour, area, output):
x,y,w,h = cv2.boundingRect(contour)
if area > 8000 and area < 15000 and w > h * 3:
img_hsv = cv2.cvtColor(output, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(img_hsv, (0, 0, 0), (255, 255, 255))
cropped_from_contour = output[y:y+h, x:x+w]
cv2.rectangle(output,(x,y),(x+w,y+h),(0,0,0),2)
cv2.putText(output, f"x:{x}, y:{y}", (x+5,y+27), self.font, 0.35, (255, 255, 255), 1, cv2.LINE_AA)
cv2.rectangle(output,(x,y),(x+w,y+h),(0,255,0),2)
average_color = self.get_average_color(output[y:y+h,x:x+w])
cv2.putText(output, f"{average_color}", (x+5,y+37), self.font, 0.35, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(output, f"w:{w}, h:{h}", (x+5,y+47), self.font, 0.35, (255, 255, 255), 1, cv2.LINE_AA)
self.marker = [x, y, w, h]
return True
self.marker = [0, 0, 0, 0]
return False
def find_tract(self, contour, area, output):
if area > 190000:
x,y,w,h = cv2.boundingRect(contour)
cv2.drawContours(output, [contour], -1, (0, 255, 0), 1)
rect = cv2.minAreaRect(contour)
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(output,[box],0,(0,0,255),5)
cv2.putText(output, f"{x}, {y}", (x+5,y+25), self.font, 0.35, (255, 255, 255), 1, cv2.LINE_AA)
self.tract = [x, y, w, h]
return True
self.tract = [0, 0, 0, 0]
return False
def process_contours(self, contours, image):
output = image.copy()
for c in contours:
area = cv2.contourArea(c)
if area > 3000:
x,y,w,h = cv2.boundingRect(c)
cv2.putText(output, str(area), (x+5,y+15), self.font, 0.35, (255, 255, 255), 1, cv2.LINE_AA)
if not self.find_marker(c, area, output):
self.find_tract(c, area, output)
return output
def convert_grey_to_bgr(self, image):
return cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
def display_window(self, cropped, thresh, output, original, info):
# resize cropped width 1080 keep aspect
resized_original_to_cropped = cv2.resize(original, (cropped.shape[1], cropped.shape[0]))
ch_3_cropped = self.convert_grey_to_bgr(cropped)
ch_3_thresh = self.convert_grey_to_bgr(thresh)
numpy_horizontal = np.vstack((resized_original_to_cropped, ch_3_thresh))
# numpy_horizontal = np.vstack((numpy_horizontal, ch_3_thresh))
numpy_horizontal = np.vstack((numpy_horizontal, output))
numpy_horizontal = np.vstack((numpy_horizontal, info))
cv2.startWindowThread()
cv2.namedWindow("STAMPER", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty("STAMPER",cv2.WND_PROP_FULLSCREEN,cv2.WINDOW_FULLSCREEN)
cv2.imshow('STAMPER', numpy_horizontal)
def abort (self):
key = cv2.waitKey(10) & 0xFF
if (key == ord('q')):
cv2.destroyAllWindows()
os.abort()
def get_image(self):
return self.camera.get_image()
def run(self):
raise NotImplementedError()