-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathObjectDetector.py
66 lines (55 loc) · 3.34 KB
/
ObjectDetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import cv2 as cv
import numpy
classNames = {0: 'background',
1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane', 6: 'bus',
7: 'train', 8: 'truck', 9: 'boat', 10: 'traffic light', 11: 'fire hydrant',
13: 'stop sign', 14: 'parking meter', 15: 'bench', 16: 'bird', 17: 'cat',
18: 'dog', 19: 'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear',
24: 'zebra', 25: 'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag',
32: 'tie', 33: 'suitcase', 34: 'frisbee', 35: 'skis', 36: 'snowboard',
37: 'sports ball', 38: 'kite', 39: 'baseball bat', 40: 'baseball glove',
41: 'skateboard', 42: 'surfboard', 43: 'tennis racket', 44: 'bottle',
46: 'wine glass', 47: 'cup', 48: 'fork', 49: 'knife', 50: 'spoon',
51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange',
56: 'broccoli', 57: 'carrot', 58: 'hot dog', 59: 'pizza', 60: 'donut',
61: 'cake', 62: 'chair', 63: 'couch', 64: 'potted plant', 65: 'bed',
67: 'dining table', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse',
75: 'remote', 76: 'keyboard', 77: 'cell phone', 78: 'microwave', 79: 'oven',
80: 'toaster', 81: 'sink', 82: 'refrigerator', 84: 'book', 85: 'clock',
86: 'vase', 87: 'scissors', 88: 'teddy bear', 89: 'hair drier', 90: 'toothbrush'}
class Detector:
def __init__(self):
global cvNet
cvNet = cv.dnn.readNetFromTensorflow('model/frozen_inference_graph.pb',
'model/ssd_mobilenet_v1_coco_2017_11_17.pbtxt')
def detectObject(self, imName):
img = cv.cvtColor(numpy.array(imName), cv.COLOR_BGR2RGB)
cvNet.setInput(cv.dnn.blobFromImage(img, 0.007843, (300, 300), (127.5, 127.5, 127.5), swapRB=True, crop=False))
detections = cvNet.forward()
cols = img.shape[1]
rows = img.shape[0]
print(detections.shape[2])
class_id=0
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > 0.4:
class_id = int(detections[0, 0, i, 1])
xLeftBottom = int(detections[0, 0, i, 3] * cols)
yLeftBottom = int(detections[0, 0, i, 4] * rows)
xRightTop = int(detections[0, 0, i, 5] * cols)
yRightTop = int(detections[0, 0, i, 6] * rows)
cv.rectangle(img, (xLeftBottom, yLeftBottom), (xRightTop, yRightTop),
(0, 0, 255))
if class_id in classNames:
label = classNames[class_id] + ": " + str(confidence)
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
yLeftBottom = max(yLeftBottom, labelSize[1])
cv.putText(img, label, (xLeftBottom+5, yLeftBottom), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255))
else:
return "false"
checklist=["car","truck","bicycle","motorcycle","bus"]
if (str(classNames[class_id]) in checklist):
return "True"
else:
return "false"
#return str(classNames[class_id]) + "with confidence " +str(confidence)