-
Notifications
You must be signed in to change notification settings - Fork 924
/
Copy pathhubconf.py
151 lines (131 loc) · 5.52 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torchvision.models.resnet import resnet50
import vision_transformer as vits
dependencies = ["torch", "torchvision"]
def dino_vits16(pretrained=True, **kwargs):
"""
ViT-Small/16x16 pre-trained with DINO.
Achieves 74.5% top-1 accuracy on ImageNet with k-NN classification.
"""
model = vits.__dict__["vit_small"](patch_size=16, num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_vits8(pretrained=True, **kwargs):
"""
ViT-Small/8x8 pre-trained with DINO.
Achieves 78.3% top-1 accuracy on ImageNet with k-NN classification.
"""
model = vits.__dict__["vit_small"](patch_size=8, num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_vitb16(pretrained=True, **kwargs):
"""
ViT-Base/16x16 pre-trained with DINO.
Achieves 76.1% top-1 accuracy on ImageNet with k-NN classification.
"""
model = vits.__dict__["vit_base"](patch_size=16, num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_vitb8(pretrained=True, **kwargs):
"""
ViT-Base/8x8 pre-trained with DINO.
Achieves 77.4% top-1 accuracy on ImageNet with k-NN classification.
"""
model = vits.__dict__["vit_base"](patch_size=8, num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_resnet50(pretrained=True, **kwargs):
"""
ResNet-50 pre-trained with DINO.
Achieves 75.3% top-1 accuracy on ImageNet linear evaluation benchmark (requires to train `fc`).
"""
model = resnet50(pretrained=False, **kwargs)
model.fc = torch.nn.Identity()
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=False)
return model
def dino_xcit_small_12_p16(pretrained=True, **kwargs):
"""
XCiT-Small-12/16 pre-trained with DINO.
"""
model = torch.hub.load('facebookresearch/xcit:main', "xcit_small_12_p16", num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_xcit_small_12_p8(pretrained=True, **kwargs):
"""
XCiT-Small-12/8 pre-trained with DINO.
"""
model = torch.hub.load('facebookresearch/xcit:main', "xcit_small_12_p8", num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_xcit_medium_24_p16(pretrained=True, **kwargs):
"""
XCiT-Medium-24/16 pre-trained with DINO.
"""
model = torch.hub.load('facebookresearch/xcit:main', "xcit_medium_24_p16", num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_xcit_medium_24_p8(pretrained=True, **kwargs):
"""
XCiT-Medium-24/8 pre-trained with DINO.
"""
model = torch.hub.load('facebookresearch/xcit:main', "xcit_medium_24_p8", num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model