forked from facebookresearch/dino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_copy_detection.py
301 lines (255 loc) · 12.3 KB
/
eval_copy_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import pickle
import argparse
import torch
from torch import nn
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torchvision import models as torchvision_models
from torchvision import transforms as pth_transforms
from PIL import Image, ImageFile
import numpy as np
import utils
import vision_transformer as vits
from eval_knn import extract_features
class CopydaysDataset():
def __init__(self, basedir):
self.basedir = basedir
self.block_names = (
['original', 'strong'] +
['jpegqual/%d' % i for i in
[3, 5, 8, 10, 15, 20, 30, 50, 75]] +
['crops/%d' % i for i in
[10, 15, 20, 30, 40, 50, 60, 70, 80]])
self.nblocks = len(self.block_names)
self.query_blocks = range(self.nblocks)
self.q_block_sizes = np.ones(self.nblocks, dtype=int) * 157
self.q_block_sizes[1] = 229
# search only among originals
self.database_blocks = [0]
def get_block(self, i):
dirname = self.basedir + '/' + self.block_names[i]
fnames = [dirname + '/' + fname
for fname in sorted(os.listdir(dirname))
if fname.endswith('.jpg')]
return fnames
def get_block_filenames(self, subdir_name):
dirname = self.basedir + '/' + subdir_name
return [fname
for fname in sorted(os.listdir(dirname))
if fname.endswith('.jpg')]
def eval_result(self, ids, distances):
j0 = 0
for i in range(self.nblocks):
j1 = j0 + self.q_block_sizes[i]
block_name = self.block_names[i]
I = ids[j0:j1] # block size
sum_AP = 0
if block_name != 'strong':
# 1:1 mapping of files to names
positives_per_query = [[i] for i in range(j1 - j0)]
else:
originals = self.get_block_filenames('original')
strongs = self.get_block_filenames('strong')
# check if prefixes match
positives_per_query = [
[j for j, bname in enumerate(originals)
if bname[:4] == qname[:4]]
for qname in strongs]
for qno, Iline in enumerate(I):
positives = positives_per_query[qno]
ranks = []
for rank, bno in enumerate(Iline):
if bno in positives:
ranks.append(rank)
sum_AP += score_ap_from_ranks_1(ranks, len(positives))
print("eval on %s mAP=%.3f" % (
block_name, sum_AP / (j1 - j0)))
j0 = j1
# from the Holidays evaluation package
def score_ap_from_ranks_1(ranks, nres):
""" Compute the average precision of one search.
ranks = ordered list of ranks of true positives
nres = total number of positives in dataset
"""
# accumulate trapezoids in PR-plot
ap = 0.0
# All have an x-size of:
recall_step = 1.0 / nres
for ntp, rank in enumerate(ranks):
# y-size on left side of trapezoid:
# ntp = nb of true positives so far
# rank = nb of retrieved items so far
if rank == 0:
precision_0 = 1.0
else:
precision_0 = ntp / float(rank)
# y-size on right side of trapezoid:
# ntp and rank are increased by one
precision_1 = (ntp + 1) / float(rank + 1)
ap += (precision_1 + precision_0) * recall_step / 2.0
return ap
class ImgListDataset(torch.utils.data.Dataset):
def __init__(self, img_list, transform=None):
self.samples = img_list
self.transform = transform
def __getitem__(self, i):
with open(self.samples[i], 'rb') as f:
img = Image.open(f)
img = img.convert('RGB')
if self.transform is not None:
img = self.transform(img)
return img, i
def __len__(self):
return len(self.samples)
def is_image_file(s):
ext = s.split(".")[-1]
if ext in ['jpg', 'jpeg', 'png', 'ppm', 'bmp', 'pgm', 'tif', 'tiff', 'webp']:
return True
return False
@torch.no_grad()
def extract_features(image_list, model, args):
transform = pth_transforms.Compose([
pth_transforms.Resize((args.imsize, args.imsize), interpolation=3),
pth_transforms.ToTensor(),
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
tempdataset = ImgListDataset(image_list, transform=transform)
data_loader = torch.utils.data.DataLoader(tempdataset, batch_size=args.batch_size_per_gpu,
num_workers=args.num_workers, drop_last=False,
sampler=torch.utils.data.DistributedSampler(tempdataset, shuffle=False))
features = None
for samples, index in utils.MetricLogger(delimiter=" ").log_every(data_loader, 10):
samples, index = samples.cuda(non_blocking=True), index.cuda(non_blocking=True)
feats = model.get_intermediate_layers(samples, n=1)[0].clone()
cls_output_token = feats[:, 0, :] # [CLS] token
# GeM with exponent 4 for output patch tokens
b, h, w, d = len(samples), int(samples.shape[-2] / model.patch_embed.patch_size), int(samples.shape[-1] / model.patch_embed.patch_size), feats.shape[-1]
feats = feats[:, 1:, :].reshape(b, h, w, d)
feats = feats.clamp(min=1e-6).permute(0, 3, 1, 2)
feats = nn.functional.avg_pool2d(feats.pow(4), (h, w)).pow(1. / 4).reshape(b, -1)
# concatenate [CLS] token and GeM pooled patch tokens
feats = torch.cat((cls_output_token, feats), dim=1)
# init storage feature matrix
if dist.get_rank() == 0 and features is None:
features = torch.zeros(len(data_loader.dataset), feats.shape[-1])
if args.use_cuda:
features = features.cuda(non_blocking=True)
# get indexes from all processes
y_all = torch.empty(dist.get_world_size(), index.size(0), dtype=index.dtype, device=index.device)
y_l = list(y_all.unbind(0))
y_all_reduce = torch.distributed.all_gather(y_l, index, async_op=True)
y_all_reduce.wait()
index_all = torch.cat(y_l)
# share features between processes
feats_all = torch.empty(dist.get_world_size(), feats.size(0), feats.size(1),
dtype=feats.dtype, device=feats.device)
output_l = list(feats_all.unbind(0))
output_all_reduce = torch.distributed.all_gather(output_l, feats, async_op=True)
output_all_reduce.wait()
# update storage feature matrix
if dist.get_rank() == 0:
if args.use_cuda:
features.index_copy_(0, index_all, torch.cat(output_l))
else:
features.index_copy_(0, index_all.cpu(), torch.cat(output_l).cpu())
return features # features is still None for every rank which is not 0 (main)
if __name__ == '__main__':
parser = argparse.ArgumentParser('Copy detection on Copydays')
parser.add_argument('--data_path', default='/path/to/copydays/', type=str,
help="See https://lear.inrialpes.fr/~jegou/data.php#copydays")
parser.add_argument('--whitening_path', default='/path/to/whitening_data/', type=str,
help="""Path to directory with images used for computing the whitening operator.
In our paper, we use 20k random images from YFCC100M.""")
parser.add_argument('--distractors_path', default='/path/to/distractors/', type=str,
help="Path to directory with distractors images. In our paper, we use 10k random images from YFCC100M.")
parser.add_argument('--imsize', default=320, type=int, help='Image size (square image)')
parser.add_argument('--batch_size_per_gpu', default=16, type=int, help='Per-GPU batch-size')
parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
parser.add_argument('--use_cuda', default=True, type=utils.bool_flag)
parser.add_argument('--arch', default='vit_base', type=str, help='Architecture')
parser.add_argument('--patch_size', default=8, type=int, help='Patch resolution of the model.')
parser.add_argument("--checkpoint_key", default="teacher", type=str,
help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
distributed training; see https://pytorch.org/docs/stable/distributed.html""")
parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
args = parser.parse_args()
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
cudnn.benchmark = True
# ============ building network ... ============
if "vit" in args.arch:
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
else:
print(f"Architecture {args.arch} non supported")
sys.exit(1)
if args.use_cuda:
model.cuda()
model.eval()
utils.load_pretrained_weights(model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size)
dataset = CopydaysDataset(args.data_path)
# ============ Extract features ... ============
# extract features for queries
queries = []
for q in dataset.query_blocks:
queries.append(extract_features(dataset.get_block(q), model, args))
if utils.get_rank() == 0:
queries = torch.cat(queries)
print(f"Extraction of queries features done. Shape: {queries.shape}")
# extract features for database
database = []
for b in dataset.database_blocks:
database.append(extract_features(dataset.get_block(b), model, args))
# extract features for distractors
if os.path.isdir(args.distractors_path):
print("Using distractors...")
list_distractors = [os.path.join(args.distractors_path, s) for s in os.listdir(args.distractors_path) if is_image_file(s)]
database.append(extract_features(list_distractors, model, args))
if utils.get_rank() == 0:
database = torch.cat(database)
print(f"Extraction of database and distractors features done. Shape: {database.shape}")
# ============ Whitening ... ============
if os.path.isdir(args.whitening_path):
print(f"Extracting features on images from {args.whitening_path} for learning the whitening operator.")
list_whit = [os.path.join(args.whitening_path, s) for s in os.listdir(args.whitening_path) if is_image_file(s)]
features_for_whitening = extract_features(list_whit, model, args)
if utils.get_rank() == 0:
# center
mean_feature = torch.mean(features_for_whitening, dim=0)
database -= mean_feature
queries -= mean_feature
pca = utils.PCA(dim=database.shape[-1], whit=0.5)
# compute covariance
cov = torch.mm(features_for_whitening.T, features_for_whitening) / features_for_whitening.shape[0]
pca.train_pca(cov.cpu().numpy())
database = pca.apply(database)
queries = pca.apply(queries)
# ============ Copy detection ... ============
if utils.get_rank() == 0:
# l2 normalize the features
database = nn.functional.normalize(database, dim=1, p=2)
queries = nn.functional.normalize(queries, dim=1, p=2)
# similarity
similarity = torch.mm(queries, database.T)
distances, indices = similarity.topk(20, largest=True, sorted=True)
# evaluate
retrieved = dataset.eval_result(indices, distances)
dist.barrier()