title | layout | start | index |
---|---|---|---|
Project 1 - The NB Language |
default |
16 Sep 2015, 00:00 (Europe/Zurich) |
4 |
Hand in: 29 Sep 2015, 23:59 (Europe/Zurich)
Project template: 1-arithmetic.zip
The cryptic acronym stands for Numbers and Booleans and comes from the course book. This simple language is defined in Chapter 3 of the the TAPL book.
t ::= "true" terms
| "false"
| "if" t "then" t "else" t
| numericLiteral
| "succ" t
| "pred" t
| "iszero" t
v ::= "true" values
| "false"
| nv
nv ::= 0 numeric values
| "succ" nv
This language has three syntactic forms: terms, which is the most general form, and two
kinds of values: numeric values, and boolean values. We have extended the syntax by
allowing numeric literals. They are syntactic sugar and have to be transformed during
parsing to their equivalent value succ succ .. 0
. The language is completely defined by
the production t
, for terms. Values are a subset of terms, and for simplicity they are
defined using a BNF notation, but they need not be parsed as such.
The evaluation rules are as follows.
if true then t1 else t2 → t1
if false then t1 else t2 → t2
isZero zero → true
isZero succ nv → false
pred zero → zero
pred succ nv → nv
t1 → t1'
——————————————————————————————————————————————
if t1 then t2 else t3 → if t1' then t2 else t3
t → t'
————————————————————
isZero t → isZero t'
t → t'
————————————————
pred t → pred t'
t → t'
————————————————
succ t → succ t'
The other style of operational semantics commonly in use is called big step sematics. Instead of defining evaluation in terms of a single step reduction, it formulates the notion of a term that evaluates to a final value, written "t ⇓ v". Here is how the big step evaluation rules would look for this language:
v ⇓ v (B-VALUE)
t1 ⇓ true t2 ⇓ v2
—————————————————————————— (B-IFTRUE)
if t1 then t2 else t3 ⇓ v2
t1 ⇓ false t3 ⇓ v3
—————————————————————————— (B-IFFALSE)
if t1 then t2 else t3 ⇓ v3
t1 ⇓ nv1
—————————————————— (B-SUCC)
succ t1 ⇓ succ nv1
t1 ⇓ 0
——————————— (B-PREDZERO)
pred t1 ⇓ 0
t1 ⇓ succ nv1
————————————— (B-PREDSUCC)
pred t1 ⇓ nv1
t1 ⇓ 0
———————————————— (B-ISZEROZERO)
iszero t1 ⇓ true
t1 ⇓ succ nv1
————————————————— (B-ISZEROSUCC)
iszero t1 ⇓ false
-
Implement
term
parser that recognizes this language, using the combinator library. The parser must produce abstract syntax trees defined inTerms.scala
. -
Implement
reduce
method which performs one step of the evaluation, according to the rules of the small step semantics. If none of the rules apply it should throwNoReductionPossible
exception containing corresponding irreducible term. -
Implement
eval
method which implements a big step evaluator (one which evaluates a term down to a value, or it gets stuck when no rule applies). This method should implement the big step semantics defined above, and not call reduce. If evaluation is not possible it should throwTermIsStuck
exception containing corresponding stuck term.
All of these are given with stubbed ???
body. ???
is used to indicated unimplemented
parts of code in Scala.
We provide a simple runnner for your application that lets you quickly debug your current
implementation. When you implement term
, reduce
and eval
implementations it should
produce results like:
Example 1:
input:
if iszero pred pred 2 then if iszero 0 then true else false else false
output:
If(IsZero(Pred(Pred(Succ(Succ(Zero))))),If(IsZero(Zero),True,False),False)
If(IsZero(Pred(Succ(Zero))),If(IsZero(Zero),True,False),False)
If(IsZero(Zero),If(IsZero(Zero),True,False),False)
If(True,If(IsZero(Zero),True,False),False)
If(IsZero(Zero),True,False)
If(True,True,False)
True
Big step: True
Example 2:
input:
pred succ succ succ false
output:
Pred(Succ(Succ(Succ(False))))
Big step: Stuck term: Succ(False)