-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy path02_generate_samples.py
143 lines (118 loc) · 5.08 KB
/
02_generate_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
import logging
import math
from functools import partial
import multiprocessing_logging
from data.avc.sample import sample_and_save
from data.utils import map_iterate_in_parallel
from log import init_console_logger
LOGGER = logging.getLogger('sampling')
LOGGER.setLevel(logging.DEBUG)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Pre-sample videos and audios for L3 model.')
parser.add_argument('-bs',
'--batch-size',
dest='batch_size',
action='store',
type=int,
default=64,
help='Number of examples per training batch')
parser.add_argument('-ns',
'--num-streamers',
dest='num_streamers',
action='store',
type=int,
default=64,
help='Number of training pescador streamers that can be open concurrently')
parser.add_argument('-mr',
'--mux-rate',
dest='mux_rate',
action='store',
type=float,
default=2.0,
help='Poisson distribution parameter for determining number of training samples to take from a streamer')
parser.add_argument('-a',
'--augment',
dest='augment',
action='store_true',
default=False,
help='If True, performs data augmentation on audio and images')
parser.add_argument('-pc',
'--precompute',
dest='precompute',
action='store_true',
default=False,
help='If True, streamer precompute samples')
parser.add_argument('-nd',
'--num-distractors',
dest='num_distractors',
action='store',
type=int,
default=1,
help='Number of distractors for generating examples')
parser.add_argument('-im',
'--include-metadata',
dest='include_metadata',
action='store_true',
help='If True, includes additional metadata in h5 files')
parser.add_argument('-mv',
'--max-videos',
dest='max_videos',
action='store',
type=int,
help='Maximum number of videos to use for generating examples. If not specified, all videos will be used')
parser.add_argument('-r',
'--random-state',
dest='random_state',
action='store',
type=int,
default=20171021,
help='Random seed used to set the RNG state')
parser.add_argument('-n',
'--num-workers',
dest='num_workers',
action='store',
type=int,
default=4,
help='Number of multiprocessing workers used to download videos')
parser.add_argument('-v',
'--verbose',
dest='verbose',
action='store_true',
default=False,
help='Logs verbose info')
parser.add_argument('subset_path',
action='store',
type=str,
help='Path to subset file')
parser.add_argument('num_samples',
action='store',
type=int,
help='(Minimum) number of samples to generate')
parser.add_argument('output_dir',
action='store',
type=str,
help='Path to directory where output files will be stored')
args = parser.parse_args()
init_console_logger(LOGGER, verbose=args.verbose)
multiprocessing_logging.install_mp_handler()
# Just round up for now
num_workers = args.num_workers
batch_size = args.batch_size
batches_per_worker = int(math.ceil(args.num_samples / (num_workers * batch_size)))
worker_func = partial(sample_and_save,
subset_path=args.subset_path,
num_batches=batches_per_worker,
output_dir=args.output_dir,
num_streamers=args.num_streamers,
batch_size=batch_size,
random_state=args.random_state,
precompute=args.precompute,
num_distractors=args.num_distractors,
augment=args.augment,
rate=args.mux_rate,
max_videos=args.max_videos,
include_metadata=args.include_metadata)
map_iterate_in_parallel(range(num_workers), worker_func,
processes=num_workers)
LOGGER.info('Done!')