-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy path05_generate_embedding_samples.py
219 lines (184 loc) · 8.53 KB
/
05_generate_embedding_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import logging
import os
import json
from l3embedding.model import load_embedding
from data.usc.dcase2013 import generate_dcase2013_folds, generate_dcase2013_fold_data
from data.usc.esc50 import generate_esc50_folds, generate_esc50_fold_data
from data.usc.us8k import generate_us8k_folds, generate_us8k_fold_data
from log import init_console_logger
LOGGER = logging.getLogger('cls-data-generation')
LOGGER.setLevel(logging.DEBUG)
def parse_arguments():
"""
Parse arguments from the command line
Returns:
args: Argument dictionary
(Type: dict[str, *])
"""
parser = argparse.ArgumentParser(description='Train an urban sound classification model')
parser.add_argument('-r',
'--random-state',
dest='random_state',
action='store',
type=int,
default=20171021,
help='Random seed used to set the RNG state')
parser.add_argument('-v',
'--verbose',
dest='verbose',
action='store_true',
default=False,
help='If True, print detailed messages')
parser.add_argument('-f',
'--features',
dest='features',
action='store',
type=str,
default='l3',
help='Type of features to be used in training')
parser.add_argument('-lmp',
'--l3embedding-model-path',
dest='l3embedding_model_path',
action='store',
type=str,
help='Path to L3 embedding model weights file')
parser.add_argument('-lpt',
'--l3embedding-pooling-type',
dest='l3embedding_pooling_type',
action='store',
type=str,
default='original',
help='Type of pooling used to downsample last conv layer of L3 embedding model')
parser.add_argument('-hs',
'--hop-size',
dest='hop_size',
action='store',
type=float,
default=0.1,
help='Hop size in seconds')
parser.add_argument('-nrs',
'--num-random-samples',
dest='num_random_samples',
action='store',
type=int,
help='Number of random samples for randomized sampling methods')
parser.add_argument('-g',
'--gpus',
dest='gpus',
type=int,
default=0,
help='Number of gpus used for running the embedding model.')
parser.add_argument('--fold',
dest='fold',
type=int,
help='Fold number to generate. If unused, generate all folds')
parser.add_argument('-ump',
'--us8k-metadata-path',
dest='us8k_metadata_path',
type=str,
action='store',
help='Path to UrbanSound8K metadata file')
parser.add_argument('dataset_name',
action='store',
type=str,
choices=['us8k', 'esc50', 'dcase2013'],
help='Name of dataset')
parser.add_argument('data_dir',
action='store',
type=str,
help='Path to directory where training set files are stored')
parser.add_argument('output_dir',
action='store',
type=str,
help='Path to directory where output data files will be stored')
return vars(parser.parse_args())
if __name__ == '__main__':
args = parse_arguments()
init_console_logger(LOGGER, verbose=args['verbose'])
LOGGER.debug('Initialized logging.')
# Unpack CL args
pooling_type = args['l3embedding_pooling_type']
metadata_path = args['us8k_metadata_path']
data_dir = args['data_dir']
features = args['features']
hop_size = args['hop_size']
random_state = args['random_state']
num_random_samples = args['num_random_samples']
model_path = args['l3embedding_model_path']
num_gpus = args['gpus']
output_dir = args['output_dir']
dataset_name = args['dataset_name']
fold_num = args['fold']
LOGGER.info('Configuration: {}'.format(str(args)))
is_l3_feature = features == 'l3'
if is_l3_feature and not model_path:
raise ValueError('Must provide model path is L3 embedding features are used')
if is_l3_feature:
# Get output dir
model_desc_start_idx = model_path.rindex('embedding')+10
model_desc_end_idx = os.path.dirname(model_path).rindex('/')
embedding_desc_str = model_path[model_desc_start_idx:model_desc_end_idx]
# If using an L3 model, make model arch. type and pooling type to path
dataset_output_dir = os.path.join(output_dir, 'features', dataset_name,
features, pooling_type, embedding_desc_str)
# Load L3 embedding model if using L3 features
LOGGER.info('Loading embedding model...')
model_type = embedding_desc_str.split('/')[-1]
l3embedding_model = load_embedding(model_path,
model_type,
'audio', pooling_type,
tgt_num_gpus=num_gpus)
else:
# Get output dir
dataset_output_dir = os.path.join(output_dir, 'features', dataset_name, features)
l3embedding_model = None
# Make sure output directory exists
if not os.path.isdir(dataset_output_dir):
os.makedirs(dataset_output_dir)
args['features_dir'] = dataset_output_dir
# Write configurations to a file for reproducibility/posterity
config_path = os.path.join(dataset_output_dir, 'config_{}.json'.format(fold_num))
with open(config_path, 'w') as f:
json.dump(args, f)
LOGGER.info('Saved configuration to {}'.format(config_path))
if dataset_name == 'us8k':
if not metadata_path:
raise ValueError('Must provide metadata file for UrbanSound8k')
if fold_num is not None:
# Generate a single fold if a fold was specified
generate_us8k_fold_data(metadata_path, data_dir, fold_num-1, dataset_output_dir,
l3embedding_model=l3embedding_model,
features=features, random_state=random_state,
hop_size=hop_size, num_random_samples=num_random_samples)
else:
# Otherwise, generate all the folds
generate_us8k_folds(metadata_path, data_dir, dataset_output_dir,
l3embedding_model=l3embedding_model,
features=features, random_state=random_state,
hop_size=hop_size, num_random_samples=num_random_samples)
elif dataset_name == 'esc50':
if fold_num is not None:
generate_esc50_fold_data(data_dir, fold_num-1, dataset_output_dir,
l3embedding_model=l3embedding_model,
features=features, random_state=random_state,
hop_size=hop_size, num_random_samples=num_random_samples)
else:
generate_esc50_folds(data_dir, dataset_output_dir,
l3embedding_model=l3embedding_model,
features=features, random_state=random_state,
hop_size=hop_size, num_random_samples=num_random_samples)
elif dataset_name == 'dcase2013':
if fold_num is not None:
generate_dcase2013_fold_data(data_dir, fold_num-1, dataset_output_dir,
l3embedding_model=l3embedding_model,
features=features, random_state=random_state,
hop_size=hop_size, num_random_samples=num_random_samples)
else:
generate_dcase2013_folds(data_dir, dataset_output_dir,
l3embedding_model=l3embedding_model,
features=features, random_state=random_state,
hop_size=hop_size, num_random_samples=num_random_samples)
else:
LOGGER.error('Invalid dataset name: {}'.format(dataset_name))
LOGGER.info('Done!')