-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrun_clover.py
102 lines (82 loc) · 3.06 KB
/
run_clover.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from montecarlo.node import Node
from montecarlo.montecarlo import MonteCarlo
from lang import can_be_solution
from lang import score_func as uncached_score_func
from common_cache import create_cached_func
score_func, cache_stats, reset_cache = create_cached_func(uncached_score_func)
from common_interactive import diffprompt
from clover_loader import dfy_annotation_iterator
from clover_config import TRAIN_PROMPTS
# from prompts import prompt, expansion_count, min_lines, check_func
from common import limit_depth, max_completion_depth
from common_stats import stats
import llm
expansion_count = None
min_lines = 5
def check_func(v):
lines = v.split('\n') # Split the string into lines
for line in lines:
# Strip leading and trailing whitespace and check if it starts with '//'
if not line.lstrip().startswith('//'):
return True # Found a line that doesn't start with '//'
return False # All lines start with '//'
def generate_complete(text, montecarlo, current_completion_depth=1):
if current_completion_depth >= max_completion_depth:
return None
prev = text
texts = llm.generate(text, 1)
text = texts[0]
score = score_func(text)
print(diffprompt(prev, texts))
if score is not None:
if score < 0:
return None
else:
if can_be_solution(text, min_lines, check_func):
montecarlo.solution = text
return text
else:
return generate_complete(text, montecarlo, current_completion_depth + 1)
def child_finder(node, montecarlo):
if limit_depth(node):
return
text = generate_complete(node.state, montecarlo)
if text is None:
node.update_win_value(-1)
else:
child = Node(text)
node.add_child(child)
child.update_win_value(1)
child.update_policy_value(1)
child = Node(node.state)
node.add_child(child)
child.update_policy_value(0.2)
def main(mins_timeout = 10):
num_solved = 0
count = 0
for prompt in dfy_annotation_iterator():
# check if prompt is in test or train set
method_name_start = prompt.find('method ') + len('method ')
method_name_end = method_name_start
while method_name_end < len(prompt) and prompt[method_name_end].isalnum():
method_name_end += 1
method_name = prompt[method_name_start:method_name_end]
if method_name in TRAIN_PROMPTS:
continue
print("----------Count={}---------".format(count))
montecarlo = MonteCarlo(Node(prompt), mins_timeout)
montecarlo.child_finder = child_finder
montecarlo.simulate(expansion_count)
print("CHOSEN SOLUTION")
print(montecarlo.solution)
if montecarlo.solution:
num_solved += 1
stats(montecarlo)
print('the number solved: {}'.format(num_solved))
print('cache stats', cache_stats)
# with open("graph.dot", "w") as f:
# montecarlo.print_tree(f)
count += 1
return cache_stats
if __name__ == "__main__":
main()