forked from lcy0604/EraseNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_STE.py
122 lines (93 loc) · 3.59 KB
/
train_STE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import math
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from PIL import Image
import numpy as np
from torch.autograd import Variable
from torchvision.utils import save_image
from torchvision import datasets
from torch.utils.data import DataLoader
from torchvision import utils
from data.dataloader import ErasingData
from loss.Loss import LossWithGAN_STE
from models.Model import VGG16FeatureExtractor
from models.sa_gan import STRnet2
torch.set_num_threads(5)
os.environ["CUDA_VISIBLE_DEVICES"] = "3" ### set the gpu as No....
parser = argparse.ArgumentParser()
parser.add_argument('--numOfWorkers', type=int, default=0,
help='workers for dataloader')
parser.add_argument('--modelsSavePath', type=str, default='',
help='path for saving models')
parser.add_argument('--logPath', type=str,
default='')
parser.add_argument('--batchSize', type=int, default=16)
parser.add_argument('--loadSize', type=int, default=512,
help='image loading size')
parser.add_argument('--dataRoot', type=str,
default='')
parser.add_argument('--pretrained',type=str, default='', help='pretrained models for finetuning')
parser.add_argument('--num_epochs', type=int, default=500, help='epochs')
args = parser.parse_args()
def visual(image):
im = image.transpose(1,2).transpose(2,3).detach().cpu().numpy()
Image.fromarray(im[0].astype(np.uint8)).show()
cuda = torch.cuda.is_available()
if cuda:
print('Cuda is available!')
cudnn.enable = True
cudnn.benchmark = True
batchSize = args.batchSize
loadSize = (args.loadSize, args.loadSize)
if not os.path.exists(args.modelsSavePath):
os.makedirs(args.modelsSavePath)
dataRoot = args.dataRoot
# import pdb;pdb.set_trace()
Erase_data = ErasingData(dataRoot, loadSize, training=True)
Erase_data = DataLoader(Erase_data, batch_size=batchSize,
shuffle=True, num_workers=args.numOfWorkers, drop_last=False, pin_memory=True)
netG = STRnet2(3)
if args.pretrained != '':
print('loaded ')
netG.load_state_dict(torch.load(args.pretrained))
numOfGPUs = torch.cuda.device_count()
if cuda:
netG = netG.cuda()
if numOfGPUs > 1:
netG = nn.DataParallel(netG, device_ids=range(numOfGPUs))
count = 1
G_optimizer = optim.Adam(netG.parameters(), lr=0.0001, betas=(0.5, 0.9))
criterion = LossWithGAN_STE(args.logPath, VGG16FeatureExtractor(), lr=0.00001, betasInit=(0.0, 0.9), Lamda=10.0)
if cuda:
criterion = criterion.cuda()
if numOfGPUs > 1:
criterion = nn.DataParallel(criterion, device_ids=range(numOfGPUs))
print('OK!')
num_epochs = args.num_epochs
for i in range(1, num_epochs + 1):
netG.train()
for k,(imgs, gt, masks, path) in enumerate(Erase_data):
if cuda:
imgs = imgs.cuda()
gt = gt.cuda()
masks = masks.cuda()
netG.zero_grad()
x_o1,x_o2,x_o3,fake_images,mm = netG(imgs)
G_loss = criterion(imgs, masks, x_o1, x_o2, x_o3, fake_images, mm, gt, count, i)
G_loss = G_loss.sum()
G_optimizer.zero_grad()
G_loss.backward()
G_optimizer.step()
print('[{}/{}] Generator Loss of epoch{} is {}'.format(k,len(Erase_data),i, G_loss.item()))
count += 1
if ( i % 10 == 0):
if numOfGPUs > 1 :
torch.save(netG.module.state_dict(), args.modelsSavePath +
'/STE_{}.pth'.format(i))
else:
torch.save(netG.state_dict(), args.modelsSavePath +
'/STE_{}.pth'.format(i))