forked from dazinovic/neural-rgbd-surface-reconstruction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader_util.py
44 lines (35 loc) · 1.23 KB
/
dataloader_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import re
import cv2
def load_poses(posefile):
file = open(posefile, "r")
lines = file.readlines()
file.close()
poses = []
valid = []
lines_per_matrix = 4
for i in range(0, len(lines), lines_per_matrix):
if 'nan' in lines[i]:
valid.append(False)
poses.append(np.eye(4, 4, dtype=np.float32).tolist())
else:
valid.append(True)
pose_floats = [[float(x) for x in line.split()] for line in lines[i:i+lines_per_matrix]]
poses.append(pose_floats)
return poses, valid
def load_focal_length(filepath):
file = open(filepath, "r")
return float(file.readline())
def alphanum_key(s):
""" Turn a string into a list of string and number chunks.
"z23a" -> ["z", 23, "a"]
"""
return [int(x) if x.isdigit() else x for x in re.split('([0-9]+)', s)]
def resize_images(images, H, W, interpolation=cv2.INTER_LINEAR):
resized = np.zeros((images.shape[0], H, W, images.shape[3]), dtype=images.dtype)
for i, img in enumerate(images):
r = cv2.resize(img, (W, H), interpolation=interpolation)
if images.shape[3] == 1:
r = r[..., np.newaxis]
resized[i] = r
return resized