forked from dazinovic/neural-rgbd-surface-reconstruction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpose_array.py
63 lines (46 loc) · 2.1 KB
/
pose_array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import tensorflow as tf
class PoseArray(tf.Module):
"""
Per-frame camera pose correction.
The pose correction contains 6 parameters for each pose (3 for rotation, 3 for translation).
The rotation parameters define Euler angles which can be converted into a rotation matrix.
"""
def __init__(self, num_frames):
super(PoseArray, self).__init__()
self.num_frames = num_frames
self.num_params = 6
self.data = tf.Variable(
tf.zeros([self.num_frames, self.num_params], dtype=tf.float32)
)
def __call__(self, ids):
return tf.gather(self.data, ids)
def get_weights(self):
return self.data.numpy()
def set_weights(self, weights):
self.data.assign(weights)
def get_translations(self, ids):
return tf.gather(self.data[:, 3:6], ids)
def get_rotations(self, ids):
return tf.gather(self.data[:, 0:3], ids)
def get_rotation_matrices(self, ids):
rotations = self.get_rotations(ids) # [N_frames, 3]
cos_alpha = tf.math.cos(rotations[:, 0])
cos_beta = tf.math.cos(rotations[:, 1])
cos_gamma = tf.math.cos(rotations[:, 2])
sin_alpha = tf.math.sin(rotations[:, 0])
sin_beta = tf.math.sin(rotations[:, 1])
sin_gamma = tf.math.sin(rotations[:, 2])
col1 = tf.stack([cos_alpha * cos_beta,
sin_alpha * cos_beta,
-sin_beta], -1)
col2 = tf.stack([cos_alpha * sin_beta * sin_gamma - sin_alpha * cos_gamma,
sin_alpha * sin_beta * sin_gamma + cos_alpha * cos_gamma,
cos_beta * sin_gamma], -1)
col3 = tf.stack([cos_alpha * sin_beta * cos_gamma + sin_alpha * sin_gamma,
sin_alpha * sin_beta * cos_gamma - cos_alpha * sin_gamma,
cos_beta * cos_gamma], -1)
return tf.stack([col1, col2, col3], -1)
def transform_points(self, points, ids):
R = self.get_rotation_matrices(ids)
t = self.get_translations(ids)
return tf.reduce_sum(points[..., None, :] * R, -1) + t