This repository has been archived by the owner on Feb 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassificationsalt.Rmd
592 lines (558 loc) · 31.4 KB
/
classificationsalt.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
---
title: "Classifications"
params:
cache: false
optimize: false
---
```{r setup, include = FALSE}
source("setup.R")
knitr::opts_chunk$set(message = FALSE, warning = FALSE)
```
```{r startup}
IsTrue <- function(x) { !is.na(x) & x }
load("_data/LSCMWG_working_data.RData")
```
### {.tabset .tabset-fade .tabset-pills}
#### Classification with two variables on each dimensions for 1990
```{r classification}
Classification <- function(health, gender,
df = data,
year_to_show = 1995,
min_to_include = 2 # this is not implemented well but works for the current setup
){
qs <- paste("q", 1:4, sep = "")
vars = c(health, gender)
df <- df[, c("country", "year", "period", vars)]
## creating 5-year averages
df <- df %>% group_by(country, period) %>%
mutate(across(all_of(vars), ~mean(.x, na.rm = TRUE), .names = "{col}_avg"), .keep = "all")
df <- df %>%
filter(year %in% seq(1970, 2015, 5)) %>% # I removed 2018 here, for consistent panels, with downstream implications
group_by(year)
df <- df %>% mutate(across(paste(vars, "avg", sep = "_"), ~quantile(.x, probs = seq(0, 1, 0.25), na.rm = TRUE)[2], .names = "{col}_q25"))
df <- df %>% mutate(across(paste(vars, "avg", sep = "_"), ~quantile(.x, probs = seq(0, 1, 0.25), na.rm = TRUE)[3], .names = "{col}_q50"))
df <- df %>% mutate(across(paste(vars, "avg", sep = "_"), ~quantile(.x, probs = seq(0, 1, 0.25), na.rm = TRUE)[4], .names = "{col}_q75"))
# df <- df %>% mutate(across(paste(vars, "avg", sep = "_"), ~quantile(.x, probs = seq(0, 1, 0.25), na.rm = TRUE)[5], .names = "{col}_q80"))
df <- ungroup(df)
df[, paste(vars, "quintile", sep = "_")] <- parallel::mclapply(vars, function(var) {
col <- rep(NA, nrow(df))
col[df[, paste(var, "avg", sep = "_")] < df[, paste(var, "avg_q25", sep = "_")]] <- 1
col[df[, paste(var, "avg", sep = "_")] >= df[, paste(var, "avg_q25", sep = "_")] &
df[, paste(var, "avg", sep = "_")] < df[, paste(var, "avg_q50", sep = "_")]] <- 2
col[df[, paste(var, "avg", sep = "_")] >= df[, paste(var, "avg_q50", sep = "_")] &
df[, paste(var, "avg", sep = "_")] < df[, paste(var, "avg_q75", sep = "_")]] <- 3
# col[df[, paste(var, "avg", sep = "_")] >= df[, paste(var, "avg_q60", sep = "_")] &
# df[, paste(var, "avg", sep = "_")] < df[, paste(var, "avg_q80", sep = "_")]] <- 4
col[df[, paste(var, "avg", sep = "_")] >= df[, paste(var, "avg_q75", sep = "_")]] <- 4
return(col)
})
# df <- df[, c("country", "year", "period", names(df)[str_detect(names(df), fixed("quintile"))])]
# combis <- expand.grid(health = health, gender = gender, stringsAsFactors = FALSE)
# combis <- split(combis, seq(nrow(combis)))
df$health_q1 <- rowSums(df[, paste(health, "quintile", sep = "_")] == 1, na.rm = TRUE)
df$health_q2 <- rowSums(df[, paste(health, "quintile", sep = "_")] == 2, na.rm = TRUE)
df$health_q3 <- rowSums(df[, paste(health, "quintile", sep = "_")] == 3, na.rm = TRUE)
df$health_q4 <- rowSums(df[, paste(health, "quintile", sep = "_")] == 4, na.rm = TRUE)
# df$health_q5 <- rowSums(df[, paste(health, "quintile", sep = "_")] == 5, na.rm = TRUE)
df$gender_q1 <- rowSums(df[, paste(gender, "quintile", sep = "_")] == 1, na.rm = TRUE)
df$gender_q2 <- rowSums(df[, paste(gender, "quintile", sep = "_")] == 2, na.rm = TRUE)
df$gender_q3 <- rowSums(df[, paste(gender, "quintile", sep = "_")] == 3, na.rm = TRUE)
df$gender_q4 <- rowSums(df[, paste(gender, "quintile", sep = "_")] == 4, na.rm = TRUE)
# df$gender_q5 <- rowSums(df[, paste(gender, "quintile", sep = "_")] == 5, na.rm = TRUE)
health_vars <- paste("health", qs, sep = "_")
gender_vars <- paste("gender", qs, sep = "_")
df$health_valid <- rowSums(df[, health_vars])
df$gender_valid <- rowSums(df[, gender_vars])
df$valid <- df$health_valid * df$gender_valid
# unique(df$country[df$valid == 0])
df <- df[df$valid > 0, ]
### version based on the standardized vars
new <- df[, c("country", "year", paste(vars, "avg", sep = "_"))] %>%
group_by(year) %>%
mutate(across(paste(vars, "avg", sep = "_"), ~as.numeric(scale(.x)), .names = "{col}")) %>%
mutate(health = (imr_wpp_avg + life_exp_wpp_avg)/2,
gender = (asfr_adol_wpp_avg + mys_age_ratio_ihme_avg)/2) %>%
select(country, year, health, gender) %>%
ungroup()
new$health_class[new$health >= quantile(new$health, probs = seq(0, 1, 0.25), na.rm = TRUE)[1]] <- 1
new$health_class[new$health >= quantile(new$health, probs = seq(0, 1, 0.25), na.rm = TRUE)[2]] <- 2
new$health_class[new$health >= quantile(new$health, probs = seq(0, 1, 0.25), na.rm = TRUE)[3]] <- 3
new$health_class[new$health >= quantile(new$health, probs = seq(0, 1, 0.25), na.rm = TRUE)[4]] <- 4
# new$health_class[new$health >= quantile(new$health, probs = seq(0, 1, 0.25), na.rm = TRUE)[5]] <- 5
new$gender_class[new$gender >= quantile(new$gender, probs = seq(0, 1, 0.25), na.rm = TRUE)[1]] <- 1
new$gender_class[new$gender >= quantile(new$gender, probs = seq(0, 1, 0.25), na.rm = TRUE)[2]] <- 2
new$gender_class[new$gender >= quantile(new$gender, probs = seq(0, 1, 0.25), na.rm = TRUE)[3]] <- 3
new$gender_class[new$gender >= quantile(new$gender, probs = seq(0, 1, 0.25), na.rm = TRUE)[4]] <- 4
# new$gender_class[new$gender >= quantile(new$gender, probs = seq(0, 1, 0.25), na.rm = TRUE)[5]] <- 5
new$class <- paste("H", new$health_class, "G", new$gender_class, sep = "")
tab_st <- new %>% filter(year == year_to_show)
n_st <- table(health = tab_st$health_class, gender = tab_st$gender_class)
dimnames(n_st) <- lapply(dimnames(n_st), function(name) { paste("Q", name, sep = "") })
tab_st <- tapply(tab_st$country, list(health = tab_st$health_class, gender = tab_st$gender_class), paste, collapse = "; ")
tab_st[is.na(tab_st)] <- ""
dimnames(tab_st) <- lapply(dimnames(tab_st), function(name) { paste("Q", name, sep = "") })
### back to original version
df <- df[, !names(df) %in% unlist(lapply(c("q20", "q40", "q60", "q80", "quintile", health, gender), function(x) names(df)[str_detect(names(df), x)]))]
health_true <- df[, health_vars] == apply(df[, health_vars], MARGIN = 1, FUN = max)
gender_true <- df[, gender_vars] == apply(df[, gender_vars], MARGIN = 1, FUN = max)
health_help <- health_true * matrix(1:4, nrow = nrow(health_true), ncol = 4, byrow = TRUE)
gender_help <- gender_true * matrix(1:4, nrow = nrow(gender_true), ncol = 4, byrow = TRUE)
help_floor <- function(set) { return(floor(mean(set[set != 0]))) }
help_ceiling <- function(set) { return(ceiling(mean(set[set != 0]))) }
df$health_class <- apply(health_help, MARGIN = 1, help_floor)
df$gender_class <- apply(gender_help, MARGIN = 1, help_floor)
df$health_class_alt <- apply(health_help, MARGIN = 1, help_ceiling)
df$gender_class_alt <- apply(gender_help, MARGIN = 1, help_ceiling)
df$health_flag <- ifelse(df$health_class != df$health_class_alt, 1, 0)
df$gender_flag <- ifelse(df$gender_class != df$gender_class_alt, 1, 0)
health_index <- paste("health_q", df$health_class, sep = "")
gender_index <- paste("gender_q", df$gender_class, sep = "")
df$health_n <- unlist(lapply(1:length(health_index), function(index) {
as.integer(df[index, health_index[index]])
}))
df$gender_n <- unlist(lapply(1:length(gender_index), function(index) {
as.integer(df[index, gender_index[index]])
}))
df$combi <- df$health_n * df$gender_n
df$class <- paste("H", df$health_class, "G", df$gender_class, sep = "")
df$class_alt <- paste("H", df$health_class_alt, "G", df$gender_class_alt, sep = "")
test <- table(df[df$year == year_to_show & df$valid >= min_to_include, c("health_class", "gender_class")])
# print(test)
number_of_countries <- sum(test)
df$support <- paste(df$country, " (", df$combi, "/", df$valid, ")", sep = "")
dat <- df[df$year == year_to_show, ]
table_to_return <- tapply(dat$support,
INDEX = list(health = dat$health_class, gender = dat$gender_class),
paste, collapse = "; ")
table_to_return[is.na(table_to_return)] <- ""
dimnames(table_to_return) <- lapply(dimnames(table_to_return), function(name) { paste("Q", name, sep = "") })
## from here, this is the old way, to create the fuzzy table, not needed anymore but useful for comparison
df$H1G1 <- df$health_q1 * df$gender_q1
df$H2G1 <- df$health_q2 * df$gender_q1
df$H3G1 <- df$health_q3 * df$gender_q1
df$H4G1 <- df$health_q4 * df$gender_q1
# df$H5G1 <- df$health_q5 * df$gender_q1
df$H1G2 <- df$health_q1 * df$gender_q2
df$H2G2 <- df$health_q2 * df$gender_q2
df$H3G2 <- df$health_q3 * df$gender_q2
df$H4G2 <- df$health_q4 * df$gender_q2
# df$H5G2 <- df$health_q5 * df$gender_q2
df$H1G3 <- df$health_q1 * df$gender_q3
df$H2G3 <- df$health_q2 * df$gender_q3
df$H3G3 <- df$health_q3 * df$gender_q3
df$H4G3 <- df$health_q4 * df$gender_q3
# df$H5G3 <- df$health_q5 * df$gender_q3
df$H1G4 <- df$health_q1 * df$gender_q4
df$H2G4 <- df$health_q2 * df$gender_q4
df$H3G4 <- df$health_q3 * df$gender_q4
df$H4G4 <- df$health_q4 * df$gender_q4
# df$H5G4 <- df$health_q5 * df$gender_q4
# df$H1G5 <- df$health_q1 * df$gender_q5
# df$H2G5 <- df$health_q2 * df$gender_q5
# df$H3G5 <- df$health_q3 * df$gender_q5
# df$H4G5 <- df$health_q4 * df$gender_q5
# df$H5G5 <- df$health_q5 * df$gender_q5
vars <- c("H1G1", "H2G1", "H3G1", "H4G1",
# "H5G1",
"H1G2", "H2G2", "H3G2", "H4G2",
# "H5G2",
"H1G3", "H2G3", "H3G3", "H4G3",
# "H5G3",
"H1G4", "H2G4", "H3G4", "H4G4"
# ,
# "H5G4",
# "H1G5", "H2G5", "H3G5", "H4G5", "H5G5"
)
names(vars) <- vars
dat <- as.data.frame(df[df$year == year_to_show, c("country", "valid", vars)])
classifications <- parallel::mclapply(vars, function(var_name) {
new <- dat[dat[, var_name] >= min_to_include, c("country", var_name, "valid")]
countries <- new$country
new <- paste(new[, "country"], " (", new[, var_name], "/", new[, "valid"], ")", sep = "")
new <- new[new != " (/)"]
return(list(class = new, ctry = countries))
})
countries <- sort(unique(unlist(lapply(classifications, function(x) { x$ctry }))))
classifications <- lapply(classifications, function(class) { class$class })
classifications <- lapply(classifications, paste, collapse = "; ")
# print(matrix(names(classifications), 5, 5, dimnames = list(health = qs, gender = qs)))
fuzzy_table <- matrix(classifications, 4, 4, dimnames = list(health = qs, gender = qs))
# if(number_of_countries != length(countries)) {
# cat("\nNot classifying the same number of countries as the fuzzy way!")
# }
df <- df[, !names(df) %in% vars]
return(list(df = df, n = test, table = table_to_return, fuzzy = fuzzy_table, standardized = new, table_st = tab_st, n_st = n_st))
}
result <- Classification(health = variables$health, gender = variables$gender, year_to_show = 1995)
kableExtra::kable(result$table, format = "html") %>%
kableExtra::kable_styling("striped") %>%
kableExtra::add_header_above(c(" " = 1, "Gender" = 4)) %>%
kableExtra::group_rows("Health", 1, 4)
# sum(result$n_st)
# xtable::xtable(result$n_st)
```
#### Fuzzy version of classification
```{r fuzzy}
kableExtra::kable(result$fuzzy, format = "html") %>%
kableExtra::kable_styling("striped") %>%
kableExtra::add_header_above(c(" " = 1, "Gender" = 4)) %>%
kableExtra::group_rows("Health", 1, 4)
```
#### New version of classification based on standardized data
```{r classification_new}
kableExtra::kable(result$table_st, format = "html") %>%
kableExtra::kable_styling("striped") %>%
kableExtra::add_header_above(c(" " = 1, "Gender" = 4)) %>%
kableExtra::group_rows("Health", 1, 4)
```
<!-- ### Classification using the performance versions of the health and gender inputs -->
```{r perf, eval = FALSE, echo = FALSE}
result_perf <- Classification(health = paste("perf", variables$health, sep = "_"),
gender = paste("perf", variables$gender, sep = "_"), year_to_show = 1995)
kableExtra::kable(result_perf$table, format = "html") %>%
kableExtra::kable_styling("striped") %>%
kableExtra::add_header_above(c(" " = 1, "Gender" = 4)) %>%
kableExtra::group_rows("Health", 1, 4)
```
<!-- #### Merging classifications into dataset -->
```{r merging}
variables$class <- c("class", "health_class", "gender_class", "health_class_alt", "gender_class_alt", "health_flag", "gender_flag")
df <- as.data.frame(result$standardized[, names(result$standardized) %in% c("country", "year", variables$class)])
# flagged <- df[df$year == 1990 & (df$health_flag == 1 | df$gender_flag == 1), c("country", variables$class)]
df$class_vv <- NA
df$class_vv[df$health_class <= 2 & df$gender_class <= 2] <- "low"
df$class_vv[df$health_class >= 3 & df$gender_class >= 3] <- "upp"
# df$class_vv[!(df$health_class < 3 & df$gender_class < 3) & !(df$health_class > 3 & df$gender_class > 3)] <- "mid"
df$class_vv[df$health_class <= 2 & df$gender_class >= 3] <- "G>H"
df$class_vv[df$health_class >= 3 & df$gender_class <= 2] <- "H>G"
# table(df$class_vv)
# df$class_vv[df$class_vv == "mid" & df$health_class > df$gender_class] <- "H>G"
# df$class_vv[df$class_vv == "mid" & df$health_class < df$gender_class] <- "G>H"
## alt
# df$class_vv_alt <- NA
# df$class_vv_alt[df$health_class_alt < 3 & df$gender_class_alt < 3] <- "low"
# df$class_vv_alt[df$health_class_alt > 3 & df$gender_class_alt > 3] <- "upp"
# df$class_vv_alt[!(df$health_class_alt < 3 & df$gender_class_alt < 3) & !(df$health_class_alt > 3 & df$gender_class_alt > 3)] <- "mid"
# df$class_vv_alt[df$class_vv_alt == "mid" & df$health_class_alt > df$gender_class_alt] <- "H>G"
# df$class_vv_alt[df$class_vv_alt == "mid" & df$health_class_alt < df$gender_class_alt] <- "G>H"
# addmargins(table(df$class_vv, df$class))
df$class_low <- ifelse(df$class_vv == "low", 1, 0)
df$class_upp <- ifelse(df$class_vv == "upp", 1, 0)
# df$class_mid <- ifelse(df$class_vv == "mid", 1, 0)
df$class_HG <- ifelse(df$class_vv == "H>G", 1, 0)
df$class_GH <- ifelse(df$class_vv == "G>H", 1, 0)
variables$class_core <- c("country", "class", "health_class", "gender_class", "class_vv")
class1975 <- df[df$year == 1975, variables$class_core]
names(class1975) <- c("country", paste(c("class", "health", "gender", "class_vv"), 1975, sep = ""))
class1990 <- df[df$year == 1990, variables$class_core]
names(class1990) <- c("country", paste(c("class", "health", "gender", "class_vv"), 1990, sep = ""))
class1995 <- df[df$year == 1995, variables$class_core]
names(class1995) <- c("country", paste(c("class", "health", "gender", "class_vv"), 1995, sep = ""))
df <- merge(data, df, by = c("country", "year"), all = TRUE)
df <- merge(df, class1975, by = "country", all.x = TRUE)
df <- merge(df, class1990, by = "country", all.x = TRUE)
df <- merge(df, class1995, by = "country", all.x = TRUE)
df <- df[order(df$country, df$year),
c("country", "year", "period", names(df)[!names(df) %in% c("country", "year", "period")])]
filepath <- paste("~/Dropbox/Lancet-SIGHT Commission/Working Groups/Metrics/Datasets/dataset_cy_class", ".csv", sep = "" )
write_csv(df, file = filepath)
```
<!-- #### Subset of 1990 classifications for which "floor" rule was applied -->
```{r flagged, eval = FALSE, echo =FALSE}
flagged
```
<!-- ### Classification trajectories (in 5-year increments based on global distributions in same time period) -->
```{r class_time, echo = FALSE, eval = FALSE, fig.width = 14, fig.height = 10, out.width = "100%", out.height = "100%"}
df$class_num <- df$health_class * df$gender_class
ggplot(data = df[df$year %in% c(seq(1965, 2015, 5), 2018), ]) +
geom_line(aes(x = year, y = class_num)) +
facet_wrap(~country) +
theme_classic() +
scale_x_continuous(breaks = seq(1970, 2010, by = 20))
```
<!-- ### Descriptives of control variables by 1990 classification: mean (SD) -->
```{r descriptives, echo = FALSE, eval = FALSE}
Descriptives <- function(cell, digits = 2) {
mean <- mean(cell, na.rm = TRUE)
sd <- sd(cell, na.rm = TRUE)
ifelse(!is.na(mean), paste(round(mean, digits), " (", round(sd, digits), ")", sep = ""), "")
}
table_to_show <- lapply(variables$controls, function(var) {
to_return <- tapply(df[, var],
INDEX = list(health = df$health1990, gender = df$gender1990),
FUN = Descriptives)
to_return[is.na(to_return)] <- ""
return(to_return)
})
noquote(table_to_show)
```
#### Which countries move more than 2 cells?
```{r movers}
df$class_num <- df$health_class * df$gender_class
names(years) <- years <- c(1990, 1995, 2015)
dat <- lapply(years, function(year) {
df <- as.data.frame(df[df$year == year, c("country", "class_num")])
names(df)[2] <- paste("class", year, sep = "")
return(df)
})
dat <- Reduce(f = function(...) merge(..., by = "country", all = TRUE), x = dat)
dat$diff <- dat$class2015 - dat$class1990
dat$diff_alt <- dat$class2015 - dat$class1995
better <- dat[IsTrue(dat$diff > 2 | dat$diff_alt > 2), ]
worse <- dat[IsTrue(dat$diff < -2 | dat$diff_alt < -2), ]
better
worse
```
#### Removing countries with untrustworthy statistics
All data is subject to measurement error. This is particularly problematic if measurement is systematically biased. Without other data to validate a given measure, this is a very difficult to problem to overcome. We only use data from reputable sources, such as academic centre and international organizations, but some self-reported data are still suspect. The World Bank and some NGOs have attempted to rate the capacity of National Statistical System, and some countries are not inlcuded in their rankings because assessments could be not be made based on available information. For instance, the ODIN rankings from 2015 to 2018 do not include the Central African Republic, Eritrea, Equatorial Guinea, and North Korea. Interestingly, among these, only North Korea is relatively highly ranked on the gender and health dimensions according to these data, which is simply not believable. Therefore, we remove only North Korea from the analyses.
```{r capacity}
df <- df[df$country != "North Korea", ]
```
#### Trends by classification groups over time {.tabset .tabset-fade .tabset-pills}
##### Life expectancy
```{r trend_life, fig.width = 12, fig.height = 8}
df$class_vv <- factor(df$class_vv, levels = c("low", "G>H", "H>G", "upp"))
df %>%
filter(year >= 1970 & !is.na(class_vv)) %>%
group_by(year) %>%
ggplot() +
stat_summary(mapping = aes(x = year, y = life_exp_wpp, group = class_vv, color = class_vv),
fun = mean, geom = "line") +
stat_summary(mapping = aes(x = year, y = life_exp_wpp),
fun = mean, geom = "line", color = "gray") +
labs(x = "", y = "", color = "Classifications") +
theme_minimal() +
theme(legend.position = "top")
ggsave(device = "pdf", height = 4, width = 6.5, filename = "_figures/trend_life_exp_wpp.pdf")
```
##### IMR
```{r trend_imr, fig.width = 12, fig.height = 8}
df %>%
filter(year >= 1970 & !is.na(class_vv)) %>%
group_by(year) %>%
ggplot() +
stat_summary(mapping = aes(x = year, y = -imr_wpp, group = class_vv, color = class_vv),
fun = mean, geom = "line") +
stat_summary(mapping = aes(x = year, y = -imr_wpp),
fun = mean, geom = "line", color = "gray") +
labs(x = "", y = "", color = "Classifications") +
theme_minimal() +
theme(legend.position = "top")
ggsave(device = "pdf", height = 4, width = 6.5, filename = "_figures/trend_imr_wpp.pdf")
```
##### MYS
```{r trend_mys, fig.width = 12, fig.height = 8}
df %>%
filter(year >= 1970 & !is.na(class_vv)) %>%
group_by(year) %>%
ggplot() +
stat_summary(mapping = aes(x = year, y = mys_age_ratio_ihme, group = class_vv, color = class_vv),
fun = mean, geom = "line") +
stat_summary(mapping = aes(x = year, y = mys_age_ratio_ihme),
fun = mean, geom = "line", color = "gray") +
labs(x = "", y = "", color = "Classifications") +
theme_minimal() +
theme(legend.position = "top")
ggsave(device = "pdf", height = 4, width = 6.5, filename = "_figures/trend_mys_age_ratio_ihme.pdf")
```
##### ASFR
```{r trend_asfr, fig.width = 12, fig.height = 8}
df %>%
filter(year >= 1970 & !is.na(class_vv)) %>%
group_by(year) %>%
ggplot() +
stat_summary(mapping = aes(x = year, y = -asfr_adol_wpp, group = class_vv, color = class_vv),
fun = mean, geom = "line") +
stat_summary(mapping = aes(x = year, y = -asfr_adol_wpp),
fun = mean, geom = "line", color = "gray") +
labs(x = "", y = "", color = "Classifications") +
theme_minimal() +
theme(legend.position = "top")
ggsave(device = "pdf", height = 4, width = 6.5, filename = "_figures/trend_asfr_adol_wpp.pdf")
```
#### Trends by 1995 classification groups {.tabset .tabset-fade .tabset-pills}
##### Health & gender
```{r categories, results = 'hide'}
summary(as.factor(df$class_vv1990))
summary(as.factor(df$class_vv1995))
lapply(c(variables$health_full, variables$gender_full), function(var) {
dat <- df[!is.na(df$class_vv1995) & df$class_vv1995 != "mid", ]
ggplot(dat, aes(x = year, y = !!sym(var), group = class_vv1995, color = class_vv1995)) +
stat_summary(fun="mean", geom="line", na.rm = TRUE, size = 1) +
xlim(1980, 2018) +
theme_bw() +
ggtitle(paste(var, "average by 1995 classification over time"))
})
```
##### Cumulative death rates
```{r deaths, results = 'hide'}
lapply(variables$death_rates, function(var) {
dat <- df[!is.na(df$class_vv1995) & df$class_vv1995 != "mid", ]
ggplot(dat, aes(x = year, y = log(!!sym(paste(var, "cumulative1991", sep = "_")) + 1),
group = class_vv1995, color = class_vv1995)) +
stat_summary(fun="mean", geom="line", na.rm = TRUE, size = 1) +
xlim(1990, 2018) +
theme_bw() +
ggtitle(paste(var, "annual cumulative average (logged) since 1991 by 1995 classification"))
})
```
##### Cumulative repression
```{r violence, results = 'hide'}
lapply(variables$measurement_models, function(var) {
dat <- df[!is.na(df$class_vv1995) & df$class_vv1995 != "mid", ]
ggplot(dat, aes(x = year, y = !!sym(paste(var, "cumulative1991", sep = "_")),
group = class_vv1995, color = class_vv1995)) +
stat_summary(fun="mean", geom="line", na.rm = TRUE, size = 1) +
xlim(1990, 2018) +
theme_bw() +
ggtitle(paste(var, "annual cumulative average since 1991 by 1995 classification"))
})
```
##### Conflict incidence
```{r incidence, results = 'hide'}
lapply(variables$conflict_incidence, function(var) {
dat <- df[df$year > 1988, ]
tbl <- tapply(dat[, var], list(health = dat$health1995, gender = dat$gender1995), mean, na.rm = TRUE)
dat <- dat[!is.na(dat$class_vv1995) & dat$class_vv1995 != "mid", ]
plot <- ggplot(dat, aes(x = year, y = !!sym(var), group = class_vv1995, color = class_vv1995)) +
stat_summary(fun="mean", geom="line", na.rm = TRUE, size = 1) +
xlim(1989, 2018) +
theme_bw() +
ggtitle(paste(var, " incidence by classification in 1995"))
return(list(tbl, plot))
})
```
<!-- #### Mean growth rates by classification with t-test (alt H: mean different from global) -->
```{r growth_rates, echo = FALSE, eval = FALSE}
GrowthRatesTtest <- function(var, min_obs = 2) {
dat1995 <- df[df$year == 1995, c("country", "class", "health_class", "gender_class", var)]
dat2015 <- df[df$year == 2015, c("country", var)]
names(dat1995)[names(dat1995) != "country"] <- paste(names(dat1995)[names(dat1995) != "country"] ,
1995, sep = "_")
names(dat2015)[names(dat2015) != "country"] <- paste(names(dat2015)[names(dat2015) != "country"] ,
2015, sep = "_")
dat <- merge(dat1995, dat2015, by = c("country"), all = TRUE)
dat$growth <- dat[, paste(var, 2015, sep ="_")] - dat[, paste(var, 1995, sep ="_")]
tbl <- tapply(dat$growth, list(health = dat$health_class_1995, gender = dat$gender_class_1995), function(df) {
if(sum(!is.na(df)) >= min_obs) {
result <- t.test(df, mu = mean(dat$growth, na.rm = TRUE))
mean <- round(result[["estimate"]][["mean of x"]], 2)
pvalue <- round(result[["p.value"]], 2)
df <- result[["parameter"]][["df"]]
cell <- paste(mean, " (p-value ", pvalue, "; df ", df, ")", sep = "")
} else { cell <- "" }
return(cell)
})
tbl[is.na(tbl)] <- ""
return(list(global_mean = mean(dat$growth, na.rm = TRUE), ttests = noquote(tbl)))
}
variables$outcomes <- c(variables$health_full, variables$gender_full, variables$death_rates, variables$measurement_models)
parallel::mclapply(variables$outcomes, GrowthRatesTtest)
```
<!-- #### Preparing cross-sectional dataset -->
```{r reg_prep}
covariates <- c("pc_rgdpe_pwt", "life_exp_wpp", "imr_wpp", "mys_ratio_hdr", "mys_age_ratio_ihme", "asfr_adol_wpp")
covariates <- paste(covariates, "avg", sep = "_")
# covariates <- c(covariates, "oda_provided_const_wdi", "oda_received_perc_gov_exp_wdi", "oda_aid_received_const_wdi", "oda_received_const_wdi", "oda_received_perc_imports_wdi", "aid_received_const_wdi")
vars <- unlist(lapply(covariates, function(var) { names(df)[str_detect(names(df), var)] }))
vars <- unique(vars[vars != "pasfr_adol_wpp"])
include <- c("country", "class", "class_vv", "class_low", "class_upp", vars)
new1990 <- df[df$year == 1990, c(include, variables$death_rates, variables$measurement_models)]
new1995 <- df[df$year == 1995, c(include, variables$death_rates, variables$measurement_models,
paste(variables$conflict_incidence, "cumulative1989", sep = "_"),
paste(variables$political, "cumulative1991", sep = "_"))]
new2015 <- df[df$year == 2015, c(include,
paste(c(variables$death_rates, variables$measurement_models), "cumulative1991", sep = "_"),
paste(c(variables$death_rates, variables$measurement_models), "cumulative1996", sep = "_"),
paste(variables$conflict_incidence, "cumulative1991", sep = "_"),
paste(variables$conflict_incidence, "cumulative1996", sep = "_"),
paste(variables$political, "cumulative1991", sep = "_"),
paste(variables$political, "cumulative1996", sep = "_"))]
names(new1990)[names(new1990) != "country"] <- paste(names(new1990)[names(new1990) != "country"], "1990", sep = "_")
names(new1995)[names(new1995) != "country"] <- paste(names(new1995)[names(new1995) != "country"], "1995", sep = "_")
names(new2015)[names(new2015) != "country"] <- paste(names(new2015)[names(new2015) != "country"], "2015", sep = "_")
new <- merge(new1990, new1995, by = c("country"), all = TRUE)
new <- merge(new, new2015, by = c("country"), all = TRUE)
## growth vars
new$pc_rgdpe_avg_growth1990_2015 <- new$pc_rgdpe_pwt_avg_2015 - new$pc_rgdpe_pwt_avg_1990
new$pc_rgdpe_avg_growth1995_2015 <- new$pc_rgdpe_pwt_avg_2015 - new$pc_rgdpe_pwt_avg_1995
new$life_exp_wpp_avg_growth1990_2015 <- new$life_exp_wpp_avg_2015 - new$life_exp_wpp_avg_1990
new$life_exp_wpp_avg_growth1995_2015 <- new$life_exp_wpp_avg_2015 - new$life_exp_wpp_avg_1995
new$imr_wpp_avg_growth1990_2015 <- new$imr_wpp_avg_2015 - new$imr_wpp_avg_1990
new$imr_wpp_avg_growth1995_2015 <- new$imr_wpp_avg_2015 - new$imr_wpp_avg_1995
new$mys_ratio_hdr_avg_growth1990_2015 <- new$mys_ratio_hdr_avg_2015 - new$mys_ratio_hdr_avg_1990
new$mys_age_ratio_ihme_avg_growth1990_2015 <- new$mys_age_ratio_ihme_avg_2015 - new$mys_age_ratio_ihme_avg_1990
new$asfr_adol_wpp_avg_growth1990_2015 <- new$asfr_adol_wpp_avg_2015 - new$asfr_adol_wpp_avg_1990
new$asfr_adol_wpp_avg_growth1995_2015 <- new$asfr_adol_wpp_avg_2015 - new$asfr_adol_wpp_avg_1995
new$mys_ratio_hdr_avg_growth1995_2015 <- new$mys_ratio_hdr_avg_2015 - new$mys_ratio_hdr_avg_1995
new$mys_age_ratio_ihme_avg_growth1995_2015 <- new$mys_age_ratio_ihme_avg_2015 - new$mys_age_ratio_ihme_avg_1995
# summary(new[, c("mys_ratio_hdr_avg_growth1990_2015", "mys_ratio_hdr_avg_growth1995_2015", "mys_age_ratio_ihme_avg_growth1990_2015")])
## logged version of pcGDP growth vars; need to account for negative values
new$lg_pc_rgdpe_avg_growth1990_2015[IsTrue(new$pc_rgdpe_avg_growth1990_2015 < 0)] <- log(-new$pc_rgdpe_avg_growth1990_2015[IsTrue(new$pc_rgdpe_avg_growth1990_2015 < 0)])
new$lg_pc_rgdpe_avg_growth1990_2015[IsTrue(new$pc_rgdpe_avg_growth1990_2015 >= 0)] <- log(new$pc_rgdpe_avg_growth1990_2015[IsTrue(new$pc_rgdpe_avg_growth1990_2015 >= 0)])
new$lg_pc_rgdpe_avg_growth1995_2015[IsTrue(new$pc_rgdpe_avg_growth1995_2015 < 0)] <- log(-new$pc_rgdpe_avg_growth1995_2015[IsTrue(new$pc_rgdpe_avg_growth1995_2015 < 0)])
new$lg_pc_rgdpe_avg_growth1995_2015[IsTrue(new$pc_rgdpe_avg_growth1995_2015 >= 0)] <- log(new$pc_rgdpe_avg_growth1995_2015[IsTrue(new$pc_rgdpe_avg_growth1995_2015 >= 0)])
## performance versions of growth measures
CodePerformance <- function(y_var, x_vars, show = FALSE, prefix = "perf") {
x_vars <- paste(x_vars, collapse = " + ")
equation <- paste(y_var, " ~ ", x_vars, sep = "")
# print(equation)
df <- na.omit(get_all_vars(formula = equation, data = new, country = country))
mod <- lm(formula = equation, data = df)
df$predicted <- predict(mod)
df[, paste(prefix, y_var, sep = "_")] <- df[, y_var] - df$predicted
if(show) print(df)
return(invisible(df[, c("country", paste(prefix, y_var, sep = "_"))]))
}
vars <- c("life_exp_wpp", "imr_wpp", "mys_ratio_hdr", "mys_age_ratio_ihme", "asfr_adol_wpp")
performance_measures <- unlist(lapply(c(1990, 1995), function(year) {
unlist(lapply(paste(vars, "avg", sep = "_"), function(var) {
return(list(
CodePerformance(y_var = paste(var, "_growth", year, "_2015", sep = ""),
x_vars = paste(c(str_replace(paste("lg", var, sep = "_"), "lg_mys", "mys"), "lg_pc_rgdpe_pwt_avg"), year, sep = "_")),
CodePerformance(y_var = paste(var, "_growth", year, "_2015", sep = ""),
x_vars = c(paste(c(str_replace(paste("lg", var, sep = "_"), "lg_mys", "mys"), "lg_pc_rgdpe_pwt_avg"), year, sep = "_"),
paste("lg_pc_rgdpe_avg_growth", year, "_2015", sep = "")), prefix = "perfv2")
))
}), recursive = FALSE)
}), recursive = FALSE)
performance_measures <- Reduce(f = function(...) merge(..., by = "country", all = TRUE), x = performance_measures)
new <- merge(new, performance_measures, by = "country", all = TRUE)
filepath <- "~/Dropbox/Lancet-SIGHT Commission/Working Groups/Metrics/Datasets/dataset_crosssectional.csv"
write.csv(new, file = filepath)
```
#### Performance Rankings within classification groups {.tabset .tabset-fade .tabset-pills}
```{r performance_function}
Performance <- function(category, year, vars) {
countries <- unique(df$country[df$year == year & df$class_vv %in% category])
countries <- countries[!is.na(countries)]
lapply(vars, function(var) {
var <- paste(var, "_growth", year, "_2015", sep = "")
# other <- paste(c("deaths_all_ucdp_rate_cumulative"), year + 1, "_2015", sep = "")
other <- NULL
select_vars <- c("country", var, paste("perf", var, sep = "_"), other)
# select_vars[!select_vars %in% names(new)]
dat <- new[new$country %in% countries, select_vars]
dat[order(dat[, var], decreasing = TRUE, na.last = NA), ]
})
}
```
##### Low classification
```{r performance_low}
Performance(category = "low", year = 1995, vars = paste(c(variables$health, variables$gender), "avg", sep = "_"))
```
##### H > G classification
```{r performance_H}
Performance(category = "H>G", year = 1995, vars = paste(c(variables$health, variables$gender), "avg", sep = "_"))
```
##### G > H classification
```{r performance_G}
Performance(category = "G>H", year = 1995, vars = paste(c(variables$health, variables$gender), "avg", sep = "_"))
```
##### High classification
```{r performance_high}
Performance(category = "upp", year = 1995, vars = paste(c(variables$health, variables$gender), "avg", sep = "_"))
```
```{r saving}
save(data, codebook, categories, variables, df, new, file = "_data/LSCMWG_working_class.RData")
```