-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_gan.py
240 lines (168 loc) · 8.27 KB
/
linear_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as autograd
import torch
from matplotlib import pyplot as plt
import numpy as np
from tqdm import tqdm
import os
cuda = True if torch.cuda.is_available() else False
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.discriminator = nn.Sequential(
nn.Linear(504, 128),
nn.ReLU(),
nn.Linear(128, 16),
nn.ReLU(),
nn.Linear(16, 1),
)
def forward(self, time_series):
return self.discriminator(time_series)
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.generator = nn.Sequential(
nn.Linear(32, 128),
nn.ReLU(),
nn.Linear(128, 256),
nn.ReLU(),
nn.Linear(256, 504)
)
def forward(self, noise):
return self.generator(noise)
class LinearGAN():
def __init__(self, input_data, epochs=5000, lambda_gp=5, generator_path='generator.pth', discriminator_path='discriminator.pth'):
self.cuda = 'cuda' if torch.cuda.is_available() else 'cpu'
self.Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
self.generator_path = generator_path
self.discriminator_path = discriminator_path
self.generator, self.optimizer_generator = self._init_generator_(
generator_path)
self.discriminator, self.optimizer_discriminator = self._init_discriminator_(
discriminator_path)
self.last_epoch_saved = self._get_last_epoch_(generator_path)
self.lambda_gp = lambda_gp
self.epochs = epochs
self.noise_dim = 32
self.batch_size = 256
self.dataloader = self._get_tesor_(input_data)
def _get_tesor_(self, input_data):
input_tensor = torch.tensor(input_data.T.values).to(self.cuda)
means = input_tensor.mean(0, keepdim=True)
deviations = input_tensor.std(0, keepdim=True)
input_tensor_scaled = (input_tensor - means) / (deviations + 0.000001)
dataloader = torch.utils.data.DataLoader(
input_tensor_scaled, batch_size=self.batch_size)
assert input_tensor_scaled.shape[1] == 504
return dataloader
def _init_generator_(self, model_path):
generator = Generator().to(self.cuda)
optimizer_generator = torch.optim.Adam(generator.parameters())
if os.path.exists(model_path):
print('initializing generator')
checkpoint_generator = torch.load(model_path)
generator.load_state_dict(checkpoint_generator['model_state_dict'])
optimizer_generator.load_state_dict(
checkpoint_generator['optimizer_state_dict'])
return (generator, optimizer_generator)
def _init_discriminator_(self, model_path):
discriminator = Discriminator().to(self.cuda)
optimizer_discriminator = torch.optim.Adam(discriminator.parameters())
if os.path.exists(model_path):
print('initializing discriminator')
checkpoint_discriminator = torch.load(model_path)
discriminator.load_state_dict(
checkpoint_discriminator['model_state_dict'])
optimizer_discriminator.load_state_dict(
checkpoint_discriminator['optimizer_state_dict'])
return (discriminator, optimizer_discriminator)
def _get_last_epoch_(self, model_path='generator.pth'):
last_epoch_saved = 0
if os.path.exists(model_path):
checkpoint = torch.load(model_path)
last_epoch_saved = checkpoint['epoch']
return last_epoch_saved
def _compute_gradient_penalty_(self, discriminator, real_samples, fake_samples, batch_size):
alpha = self.Tensor(np.random.normal(
0, 1, (batch_size, 504))).unsqueeze(0)
interpolates = (alpha * real_samples + ((1 - alpha)
* fake_samples)).requires_grad_(True)
d_interpolates = discriminator(interpolates)
fake = Variable(self.Tensor(1, batch_size, 1).fill_(
1.0), requires_grad=False)
gradients = autograd.grad(
outputs=d_interpolates,
inputs=interpolates,
grad_outputs=fake,
create_graph=True,
retain_graph=True,
only_inputs=True
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
def _train_report_(self, epoch, batch, discriminator_loss, generator_loss):
show_train_step = epoch % 50 == 0 and batch == 0
if show_train_step:
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, self.epochs, batch, len(self.dataloader), discriminator_loss.item(), generator_loss.item())
)
show_generated_time_serie = epoch % 100 == 0 and batch == 0
if show_generated_time_serie:
noise = Variable(self.Tensor(np.random.normal(
0, 1, (self.batch_size, self.noise_dim))))
fake_ts = self.generator.forward(noise.unsqueeze(0))
plt.plot(fake_ts.cpu().detach().numpy().squeeze()[0])
plt.show()
def _save_model_(self, epoch, batch, generator_loss, discriminator_loss):
will_save_model = epoch % 500 == 0 and epoch != 0 and batch == 0
if will_save_model:
print('Saving model')
torch.save({
'epoch': epoch,
'model_state_dict': self.generator.state_dict(),
'optimizer_state_dict': self.optimizer_generator.state_dict(),
'loss': generator_loss,
}, self.generator_path)
torch.save({
'epoch': epoch,
'model_state_dict': self.discriminator.state_dict(),
'optimizer_state_dict': self.optimizer_discriminator.state_dict(),
'loss': discriminator_loss,
}, self.discriminator_path)
def train(self):
for epoch in tqdm(range(self.last_epoch_saved, self.epochs)):
for batch, time_serie in enumerate(self.dataloader):
batch_size_epoch = time_serie.shape[0]
real_time_serie = time_serie
self.optimizer_discriminator.zero_grad()
noise = Variable(self.Tensor(np.random.normal(
0, 1, (batch_size_epoch, self.noise_dim)))).to(self.cuda)
fake_time_serie = self.generator(noise.unsqueeze(0))
fake_validity = self.discriminator(fake_time_serie.float())
real_validity = self.discriminator(
real_time_serie.unsqueeze(0).float())
gradient_penalty = self._compute_gradient_penalty_(
self.discriminator, real_validity, fake_validity, batch_size_epoch)
discriminator_loss = -torch.mean(real_validity) + torch.mean(
fake_validity) + self.lambda_gp * gradient_penalty
discriminator_loss.backward()
self.optimizer_discriminator.step()
self.optimizer_generator.zero_grad()
will_train_generator = batch % 10 == 0
if will_train_generator:
fake_time_serie = self.generator(noise.unsqueeze(0))
fake_validity = self.discriminator(fake_time_serie.float())
generator_loss = -torch.mean(fake_validity)
generator_loss.backward()
self.optimizer_generator.step()
self._train_report_(
epoch, batch, discriminator_loss, generator_loss)
self._save_model_(
epoch, batch, generator_loss, discriminator_loss)