Skip to content

Commit

Permalink
add unicode-math document
Browse files Browse the repository at this point in the history
  • Loading branch information
mengchaoheng committed Dec 21, 2024
1 parent 03ce7b4 commit 01c101c
Show file tree
Hide file tree
Showing 3 changed files with 1 addition and 68 deletions.
69 changes: 1 addition & 68 deletions chapter/chapter05.tex
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
\chapter{第五章}
本章摘选一些公式作为公式字体测试,同学们可以换成自己的文本,测试不同公式字体设置的效果。
本章摘选一些公式作为公式字体测试,同学们可以换成自己的文本,测试不同公式字体设置的效果。更多字体测试文件在math\_font文件夹。

\section{建模}
\label{sec:1}
Expand Down Expand Up @@ -68,75 +68,8 @@ \subsection{控制力矩}

从式 \eqref{eq_5} 和式 \eqref{eq_6} 中,$\boldsymbol{B}$ 的定义表示虚拟输入的大小被标准化为 $[-1,1] \centerdot {{\delta }_{m }}$。 通过这种模块化,在式 \eqref{eq_2} 中从舵偏转角到控制力矩的直接映射被转换为从舵偏转角到虚拟输入的映射,而映射矩阵 $\boldsymbol{B}$ 不包含模型信息。


\subsection{角速度环动力学}
在无人机控制的意义上,旋转风扇通常被假设为一个圆盘,对飞行器施加稳定的推力和扭矩,因此无人机可以被视为刚体。 因此角速度动力学方程为:
\begin{equation}
{{\boldsymbol{\dot \omega }}^B} = {{\boldsymbol{I}}^{ - 1}}\left( {{\boldsymbol{M + I}}{{\boldsymbol{\omega }}^B}{\boldsymbol{ \times }}{{\boldsymbol{\omega }}^B}} \right)
\label{eq_16}
\end{equation}
其中 $\boldsymbol M$ 由式 \eqref{eq_1} 预先定义,$\times$ 表示向量的叉积。

通过将式 \eqref{eq_1}、\eqref{eq_5} 代入式 \eqref{eq_16},可以将角速度动力学重写为:
\begin{equation}
\left\{ \begin{array}{l}
{{{\boldsymbol{\dot \omega }}}^B} = {\boldsymbol{L}} + {{\boldsymbol{H}}_1}{\boldsymbol{\nu }}{\Omega ^2} + {{\boldsymbol{H}}_2}\Omega + {{\boldsymbol{H}}_3}\dot \Omega \\
{\boldsymbol{\nu }} = {\boldsymbol{B\delta }}
\end{array} \right.
\label{eq_17}
\end{equation}
其中 ${\boldsymbol{L}} = {\boldsymbol{L}}({{\boldsymbol{V}}^I},{\boldsymbol{\eta}},{{\boldsymbol{W}}^I} ,{{\boldsymbol{\omega }}^B}) \buildrel \Delta \over = {{\boldsymbol{I}}^{ - 1}}({{\boldsymbol{M}}_\text{aero}} + {\boldsymbol{I}}{{\boldsymbol{\omega }}^B}{\boldsymbol{ \times }}{{\boldsymbol{\omega }}^B})$。 矩阵 ${{\boldsymbol{H}}_{1}}$由式 \eqref{eq_6} 定义。

\section{控制器设计}

\subsection{非线性动态}

\begin{equation}
{{\boldsymbol{\dot \omega }}^B} = {\boldsymbol{L}}({{\boldsymbol{V}}^I},{\boldsymbol{\eta }},{{\boldsymbol{W}}^I},{{\boldsymbol{\omega }}^B}) + {{\boldsymbol{H}}_1}{\boldsymbol{\nu }}{\Omega ^2} + {{\boldsymbol{H}}_2}({{\boldsymbol{\omega }}^B})\Omega + {{\boldsymbol{H}}_3}\dot \Omega
\label{eq_18}
\end{equation}

\begin{equation}
\begin{aligned}
{{{\boldsymbol{\dot{\omega }}}}^{B}}= &\ \boldsymbol{L}({{\boldsymbol{V}}^{I}},\boldsymbol{\eta },{{\boldsymbol{W}}^{I}},{{\boldsymbol{\omega }}^{B}})+{{\boldsymbol{H}}_{1}}\boldsymbol{\nu }{{\Omega }^{2}}+{{\boldsymbol{H}}_{2}}({{\boldsymbol{\omega }}^{B}})\Omega +{{\boldsymbol{H}}_{3}}\dot{\Omega } \\
= &\ {{\boldsymbol{L}}_{0}}+{{\boldsymbol{H}}_{1}}{{\boldsymbol{\nu }}_{0}}{{\Omega }_{0}}^{2}+{{\boldsymbol{H}}_{20}}{{\Omega }_{0}}+{{\boldsymbol{H}}_{3}}{{{\dot{\Omega }}}_{0}} \\
&\ +[\frac{\partial \boldsymbol{L}}{\partial {{\boldsymbol{V}}^{I}}}({{\boldsymbol{V}}^{I}}-{{\boldsymbol{V}}_{0}}^{I})+\frac{\partial \boldsymbol{L}}{\partial \boldsymbol{\eta }}(\boldsymbol{\eta }-{{\boldsymbol{\eta }}_{0}})+\frac{\partial \boldsymbol{L}}{\partial {{\boldsymbol{\omega }}^{B}}}({{\boldsymbol{\omega }}^{B}}-{{\boldsymbol{\omega }}_{0}}^{B}) \\
&\ +\frac{\partial \boldsymbol{L}}{\partial {{\boldsymbol{W}}^{I}}}({{\boldsymbol{W}}^{I}}-{{\boldsymbol{W}}_{0}}^{I}) \\
&\ +\frac{\partial ({{\boldsymbol{H}}_{1}}\boldsymbol{\nu }{{\Omega }^{2}})}{\partial \boldsymbol{\nu }}(\boldsymbol{\nu }-{{\boldsymbol{\nu }}_{0}})+\frac{\partial ({{\boldsymbol{H}}_{1}}\boldsymbol{\nu }{{\Omega }^{2}})}{\partial \Omega }(\Omega -{{\Omega }_{0}}) \\
&\ +\frac{\partial ({{\boldsymbol{H}}_{2}}\Omega )}{\partial {{\boldsymbol{\omega }}^{B}}}({{\boldsymbol{\omega }}^{B}}-{{\boldsymbol{\omega }}_{0}}^{B})+\frac{\partial ({{\boldsymbol{H}}_{2}}\Omega )}{\partial \Omega }(\Omega -{{\Omega }_{0}}) \\
&\ +{{\left. \frac{\partial ({{\boldsymbol{H}}_{3}}\dot{\Omega })}{\partial \dot{\Omega }}(\dot{\Omega }-{{{\dot{\Omega }}}_{0}})] \right|}_{\begin{smallmatrix}
{{\boldsymbol{V}}^{I}}={{\boldsymbol{V}}_{0}}^{I},\boldsymbol{\eta }={{\boldsymbol{\eta }}_{0}},{{\boldsymbol{\omega }}^{B}}={{\boldsymbol{\omega }}_{0}}^{B},{{\boldsymbol{W}}^{I}}=\boldsymbol{W}_{0}^{I} \\
\boldsymbol{\nu }={{\boldsymbol{\nu }}_{0}},\Omega ={{\Omega }_{0}},\dot{\Omega }={{{\dot{\Omega }}}_{0}}
\end{smallmatrix}}}
\end{aligned}
\label{eq_19}
\end{equation}

\begin{equation}
\begin{array}{ccccc}
{\left. {\dfrac{{\partial ({{\boldsymbol{H}}_1}{\boldsymbol{\nu }}{\Omega ^2})}}{{\partial {\boldsymbol{\nu }}}}} \right|_{\Omega = {\Omega _0}}} & = {{\boldsymbol{H}}_1}{\Omega _0}^2 ,\quad{\left. { \dfrac{{\partial ({{\boldsymbol{H}}_1}{\boldsymbol{\nu }}{\Omega ^2})}}{{\partial \Omega }}} \right|_{{\boldsymbol{\nu }} = {{\boldsymbol{\nu }}_0}}} = & 2{{\boldsymbol{H}}_1}{{\boldsymbol{\nu }}_0}{\Omega _0}\\
{\left. {\dfrac{{\partial ({{\boldsymbol{H}}_2}\Omega )}}{{\partial \Omega }}} \right|_{\Omega = {\Omega _0}}} & = {{\boldsymbol{H}}_2}({{\boldsymbol{\omega }}_0}^B),\quad {\left. { \dfrac{{\partial ({{\boldsymbol{H}}_3}\dot \Omega )}}{{\partial \dot \Omega }}} \right|_{\dot \Omega = {{\dot \Omega }_0}}} = & {{\boldsymbol{H}}_3}
\end{array}
\label{eq_20}
\end{equation}

最终,我们有:
\begin{equation}
{{\boldsymbol{\dot \omega }}^B} = {{\boldsymbol{K}}_\omega }({\boldsymbol{\omega }}_d^B - {{\boldsymbol{\omega }}^B})
\label{eq_27}
\end{equation}
其中 ${{\boldsymbol{K}}_{\omega }}=\text{diag}({{K}_{\omega 1}}$, ${{K}_{\omega 2}}$, ${{K}_{\omega 3}})$ 是反馈增益矩阵,$\boldsymbol{\omega }_{d}^{B}$ 表示所需的角速度。


\begin{equation}
\begin{array}{l}
{{\boldsymbol{\nu }}_d} = {{\boldsymbol{\tau }}_i} + {{\boldsymbol{\tau }}_f},\\
{{\boldsymbol{\tau }}_i} = - {\left( {{{\boldsymbol{H}}_1}{\Omega _0}^2} \right)^{ - 1}}\left[ {{{{\boldsymbol{\dot \omega }}}_0}^B + {\boldsymbol{T}}({\Omega _d},{{\dot \Omega }_d})} \right] + {{\boldsymbol{\nu }}_0},\\
{{\boldsymbol{\tau }}_f} = {\left( {{{\boldsymbol{H}}_1}{\Omega _0}^2} \right)^{ - 1}}{{\boldsymbol{K}}_\omega }({\boldsymbol{\omega }}_d^B - {{\boldsymbol{\omega }}^B})
\end{array}
\label{eq_28}
\end{equation}
其中 ${{\boldsymbol{\tau }}_{i}}$ 定义为INDI 输入,${{\boldsymbol{\tau }}_{f}}$ 定义为反馈输入。

\subsection{控制分配}
在底层设计中,我们解决控制分配问题,即利用下式,对给定的 ${{\boldsymbol{\nu }}_{d}}$ 求解适当的舵偏转角 $\boldsymbol{\delta }$
Expand Down
Binary file not shown.
Binary file modified scutthesis.pdf
Binary file not shown.

0 comments on commit 01c101c

Please sign in to comment.